
Invariance-Based On-Line Test for RTL Controller-Datapath Circuits*

Yiorgos Makris, Ismet %D\UDNWDUR÷OX��$OH[�2UDLOR÷OX
Computer Science and Engineering Department

University of California, San Diego
{makris, ibayrakt, alex}@cs.ucsd.edu

                                                          
*  This work is supported in part through a research grant from the
University of California MICRO program and Intel Corporation.

Abstract

We present a low-cost on-line test methodology for RTL
controller-datapath pairs, based on the notion of path
invariance. The fundamental observation supporting the
proposed methodology is that the transparency behavior
inherent in RTL components renders rich sources of
invariance in a design. Furthermore, the algorithmic
controller-datapath interaction provides additional sources
of invariance.  judicious selection and combination of
modular transparency, based on the algorithm implemented
by the controller-datapath pair, yields a powerful set of
invariant paths. Such paths enable a simple, yet very
efficient on-line test capability, achieving fault security in
excess of 90% while keeping the hardware overhead below
40% on complicated, difficult to test, benchmarks.

1. Introduction

The ability to test the functionality of a circuit during
normal operation is becoming an increasingly desirable
property of modern designs. Identifying and discarding
faulty results before they are further utilized constitutes a
powerful design attribute. However, such a capability
incurs considerable cost in terms of area overhead and
possibly performance degradation. Devising a low-cost,
non-intrusive on-line test methodology that provides high
fault security is therefore a challenging task.

Current state-of-the-art efforts in on-line test research [8]
can be roughly categorized along two main directions, as
depicted in figure (1). Approaches along the first direction
[10, 13] utilize vectors and responses generated off-line,
which are stored on-chip, possibly compacted. Whenever
one of these vectors appears at the inputs during normal
functionality, the response is checked against the expected
response. Such approaches require inordinate hardware
overhead for storing a sufficient number of test vectors.
Their applicability is consequently limited largely to
combinational circuits. Approaches along the second
direction utilize coarse behavioral invariance either
inherent in the design [1, 2] or imposed through error

detection codes [11, 14], in order to check the correctness
of the functionality. In this case, while the circuit computes
function f(x), an additional function, g(x), with a well-
defined, simple-to-check relation to f(x), is also computed.
The operational health of the circuit is verified by checking
that the relation between f(x) and g(x) holds. However,
coarse behavioral design invariance is inherently available
only in limited domains; furthermore, implementations
such as [2] can necessitate appreciable area overhead.
Invariably, error detection codes incur high area and
performance overhead.

In this paper, we propose an on-line test methodology
that employs simple invariant functions distributed across
several paths in the design. An overview of the proposed
scheme is provided in section 2. The applicability of the
inherent transparency behavior of RTL modules for on-
line test is examined in section 3. The hardware overhead
problem is addressed through transparent path composition
in section 4. In section 5 we utilize algorithmic path
invariance for enhancing fault security. The latency
problem is discussed in section 6. An example of the
proposed methodology is given in section 7 and an
experimental setup along with results on benchmark
circuits is provided in section 8.

Figure (1): Common on-line test approaches
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Figure (2): Proposed methodology overview

2. Methodology overview

An overview of the proposed on-line test methodology
is shown in figure (2). Given a controller-datapath pair,
several invariant paths are identified based on the
transparency behavior and the algorithmic interaction of
the RTL modules. The invariant behavior of each path is
activated under a set of conditions. Checking the invariant
paths during normal circuit functionality requires two
elements. The first element is the logic that examines
whether the conditions hold, while the second element is
the actual invariance checker. In the event that an invariant
path is activated but the invariance relationship does not
hold, the on-line test output indicates an error.

The distribution of invariance checking throughout the
design results in simpler invariant relations and therefore
lower area overhead for the checkers, as compared to a
global invariance checker. Furthermore, the invariant paths
rely on transparency of simple RTL modules, extending
the applicability domain of invariance-based on-line test to
general RTL designs. However, achieving high fault
security with low area overhead requires that a small
number of key invariant paths be selected, capable of
covering a high number of faults in the design. The
identification, evaluation, and selection of these paths are
discussed in the following sections.

3. Modular transparency & on-line test

Modular transparency constitutes a key design attribute,
enabling several off-line hierarchical test methodologies
[5, 7, 12]. Transparency [3, 5] provides a mechanism for
traversing a hierarchical design in order to test a module
through reachability paths. In this section, we examine the
applicability of modular transparency for on-line test, in an
effort to integrate off-line and on-line test approaches.

Figure (3): On-line test via modular transparency

Transparency behavior is defined as bijective functions
of RTL modules. Such behavior is activated under certain
conditions imposed on the inputs of the module in
transparency mode. Common transparency functions, such
as Identity and Inversion, establish simple relations between
the inputs and the outputs of a module. Checking this
relation provides an on-line test capability detecting any
fault affecting the transparency, as shown in figure (3).

We now examine the efficiency of this scheme for
detecting faults in simple RTL modules. Consider the 8-bit
2-to-1 MUX shown in figure (4)(a), comprising two
transparency functions. The proposed on-line test scheme
will detect 100% of the faults in the MUX. Additionally,
consider a module where the transparency functions do not
cover the complete functionality of the circuit. In figure
(4)(b) we show an 8-bit SUBTRACTOR, comprising two
transparency functions. The corresponding on-line test
mechanism results in 80% fault coverage in the
SUBTRACTOR, implying that a large number of faults
can be detected through a few transparency functions. The
idea is readily extensible to sequential modules. In figure
(4)(c) we demonstrate the same scheme for an 8-bit
REGISTER, where 99% of the faults are detected by the
two transparency functions shown. Finally, in figure (4)(d)
we show how this idea is applied on a 4-bit LOADABLE
COUNTER. While counters cause serious problems to
ATPG tools, there exist transparency functions that cover
many faults. For example, the two transparency functions
in figure (4)(d) cover 88% of the COUNTER faults.

4. Transparency-based path invariance

Incorporating a checking mechanism for each
transparency function of every module in the design
results in inordinate hardware overhead. In order to reduce

Figure (4): Examples of modular transparency
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Figure (5): Transparency path composition example

this cost, several modular transparency functions can be
combined on a transparent path, such that only one
checking mechanism for the complete path suffices for all
the constituent transparency functions. Such a path may
span not only across several modules of the design, but
also across several clock cycles. In this manner,
complicated sequential behavior of the design can also be
checked along with the simple transparency functions.

As an example of transparent path composition,
consider the circuit shown in figure (5). Three
transparency functions are provided for each of the two
modules in the design, requiring six distinct checking
mechanisms. However, a path spanning 5 clock cycles can
be composed, comprising all of the six transparency
functions. Although the activation conditions of the six
transparency functions still need to be checked, the path
transparency function requires only one check instead of
six. As a result, path composition significantly reduces the
hardware required.

Off-line test path composition has been extensively
studied [3, 5, 7, 12] in order to provide transparent
reachability paths for hierarchical test. The basic path
construction capability is therefore available and can be
extended to automate the composition of transparency-
based invariant paths. However, the aforementioned off-
line path composition approaches need to be tuned to the
particularities of on-line test. Ideally, the algorithm should
compose a small number of long paths covering all the
modular transparency functions, in order to minimize
hardware overhead. However, the activation frequency of
the path also plays an important role in on-line test, due to
its latency impact. Off-line test path composition
algorithms verify that there is no conflict among the
activation conditions on the path but do not consider
activation frequency, since the path can be fully
controlled during off-line test application. In on-line test,

however, we rely on normal operation to activate the
transparent paths. Therefore, the transparency frequency
determined by the complexity of the activation conditions
needs to be taken into account in order to balance the
number, the cost, and the efficiency of the transparent
paths. The hierarchical test path composition algorithm
introduced in [6] can be modified in order to address these
issues. In order to reduce the cost of the checker for the
composite path function, simple modular transparency
functions such as identity and inversion are utilized.

5. Algorithmic path invariance

While modular transparency functions and the
composite invariant paths are capable of detecting many
faults, the resulting fault coverage may not be adequate to
ensure high fault security in the design. Additional sources
of invariance, capable of checking for faults that can not
be detected through transparency functions, are therefore
required. Such invariance can be obtained from the
algorithmic interaction between the datapath and the
controller of the design. Algorithmic invariance captures
the restrictions imposed by the controller on the datapath.
Any fault causing a deviation from this restricted behavior
will be detected through algorithmic invariance checking.
Algorithmic invariance frequently has an equivalence
relation to the conditions. In this case we verify not only
the transparency existence when the activation conditions
hold, but also the lack of transparency when the activation
conditions do not hold, thus increasing the number of
detected faults. An example of algorithmic invariance and
the consequent on-line test scheme is shown in figure (6).
The example algorithm keeps track of the minimum,
maximum, sum and average of an array of numbers.
Several invariant attributes can be identified on this
algorithm. For example, during normal circuit operation,
the values of the four design registers are related through
the inequality MIN�$9*�0$;�680. Any fault violating
this algorithmic invariance will be detected.

The most interesting cases of algorithmic invariance
cover faults in the controller, where transparency rarely
exists. Additionally, algorithmic invariance has a clear
advantage in terms of activation frequency; algorithmically
invariant  paths  are always active and therefore the on-line

Figure (6): Algorithmic path invariance example
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test scheme continuously checks for errors. In case
algorithmic invariance exists only on part of the algorithm,
relying on a particular control path to be taken, the
activation frequency will reflect the execution frequency of
the specific part of the algorithm. In short, algorithmic path
invariance complements the transparency path invariance
in terms of both fault coverage and activation frequency.

6. Invariance activation frequency

Unlike off-line test where faults are detected before the
circuit performs its intended operation, fault detection
latency, the time interval between fault occurrence and
fault detection, is a critical issue during on-line test. The
later a fault is detected after its occurrence, the higher the
chances that an erroneous result may slip undetected.
Latency has not only been a difficult problem for on-line
test methodologies to solve, but also hard to estimate.
While some on-line test methods [2, 11, 14] guarantee
zero-latency, they incur excessive area overhead, thus
limiting their applicability. The invariance-based on-line
test methodology proposed in [1] reduces the area overhead
yet at the cost of introducing latency. Within input
monitoring techniques, such as [10, 13], latency is heavily
dependent on the values that appear at the inputs of the
circuit during normal operation. Similarly, in the proposed
methodology, latency depends on the activation frequency
of the invariant paths. Invariant path activation, however,
requires only a few conditions to be met and not a complete
vector, thus enabling all vectors satisfying these conditions
to be used for on-line test. Therefore, invariant path
activation frequency is expected to be significantly higher
than the activation frequency of techniques using stored test
vectors. In addition, the proposed scheme provides flexibility
in judiciously selecting among alternative invariant paths,
based on the complexity of the activation conditions.

Depending on the activation frequency, invariant paths
can be roughly categorized into three types. The first type
comprises invariant paths that are always active, such as
unconditional algorithmic invariance. This is the most
desirable type of invariance since all faults that can be
detected through this checking mechanism will have zero
latency. The second type comprises invariant paths that are
not always active, but the activation conditions are
frequently met during normal operation. This type of
invariance is also highly desirable, since the frequent
activation will help keep latency low. Conditional
algorithmic invariance is a good example of this type. The
third type comprises invariant paths that have low
probability of activation. As an example of this type,
transparency relying on specific values of wide datapath
signals has low activation probability, assuming uniform
distribution. Low priority should be given to the
incorporation of such invariance checking mechanisms in
the design, especially when alternative invariant paths exist.

The activation frequency of an invariant path can be
estimated in two different ways. The first method is a static
analysis of the controller-datapath interaction. Starting
from the final states of the controller, we trace backwards
the datapath conditions that need to hold for the algorithm
to terminate. This information is used to characterize the
severity of the activation conditions for each invariant
path. When this type of analysis becomes too expensive
due to the large number of controller states and paths, a
dynamic profiling mechanism is employed to estimate the
activation frequency. In profiling, a large number of
random vectors are simulated and the number of times that
the activation conditions of an invariant path are satisfied
is noted. This provides an indication of the relative
activation frequency of alternative invariant paths, thus
guiding selection among them.

From a latency perspective, a larger number of shorter
but more frequently activated invariant paths should be
preferred over a few, long but rarely activated invariant
paths. The number of invariant paths, their activation
frequency, and the number of activation conditions (and
therefore the length of the path) are conflicting objectives.
The given classification of invariant paths, along with a
fault coverage analysis of each, provides the necessary
parameters for developing heuristics to exploit this trade-
off and balance the area overhead, the fault coverage
attainable, and the fault detection latency.

7. Example

The proposed methodology is demonstrated through the
greatest-common-divisor (GCD) circuit, on which three
invariance checks are described. The first check exploits a
transparency function of a single module, the second
check utilizes a transparency-based invariant path, and the
third check uses algorithmic invariance of the design.
Figure (7) shows the GCD algorithm and circuit.

The first invariance check example is based on the
transparency function “C[t]=B[t] if A[t]=2*B[t]”  of the
SUBTRACTOR. The on-line test mechanism is shown in
figure (8)(a). A shifter and two comparators suffice for
checking the condition and the transparency function. The
important attribute of this check is its activation frequency,
since it is activated almost once per GCD calculation. The
reason for this is that the subtract-&-swap GCD algorithm
terminates when y=0, which implies in turn that x=y two
clock cycles earlier. This requires that either the initial
values of x and y be equal or that x=2*y, which is the
activation condition of the SUBTRACTOR transparency.
The superior fault coverage, the simplicity of checking and
the high frequency of activation make this invariance
check a highly efficient on-line test mechanism.

The second example is a transparency-based invariant
path. The composite function of this transparent path is
“OUT[t+4]=X[t] if  X[t]=Y[t] AND X[t] ��´. Any  fault in



Figure (7): The GCD benchmark circuit

Figure (8): Invariance checking examples on the GCD benchmark

the functions on the path or in the corresponding controller
behavior will be detected by the checking mechanism of
figure (8)(b). An additional register N is required to store
the value of register X whenever the condition “X=Y AND
X��´� KROGV�� 7KH� VWRUHG� YDOXH� ZLOO� EH� FRPSDUHG� �� FORFN
cycles later to the output of the circuit, in order to check
the path function “OUT[t+4]=X[t] if  X[t]=Y[t] AND
X[t] �0”.  The hardware cost required is certainly justified
by the large number of transparency functions on the path.
The activation frequency of this path is also once per GCD
calculation, for the same reason as in the first example.

The third example identifies algorithmic invariance in
the GCD circuit. The first part of the if statement within
the while loop describes the swapping which is performed
in state S3 of the controller, which is reached only when

Figure (9): Experimental validation

condition x<y holds. Performing a swap while x�\�would
be algorithmically invalid during normal operation of the
GCD calculation. As shown in figure (8)(c), this
algorithmic invariance provides an on-line test mechanism
capable of catching controller faults. The hardware cost is
low and the activation frequency high since the algorithmic
invariance is always active.

8. Experimental results

The proposed on-line test methodology is evaluated on
three difficult-to-test sequential benchmark circuits, using
the experimental setup shown in figure (9). The fault
security and fault coverage achieved by the identified path
invariance, as well as the area overhead imposed by the
invariance checking hardware are examined. The first
benchmark (GCD) is the greatest-common-divisor circuit
that we examined in section 7. The second benchmark
(MINMAX) calculates the minimum, maximum and
average of a series of numbers. The third benchmark
(MUL) is a shift-&-add 8-bit multiplier.

We first apply gate-level ATPG using HITEC [9] in
order to obtain the deterministic off-line test fault coverage
as a reference point. Subsequently, 1000 random inputs are
generated and fault simulated for each design using HOPE
[4] and the random off-line test fault coverage is obtained,
along with the set of covered faults. The design is then
augmented according to the proposed methodology and the
same random inputs are fault simulated. Only the on-line
test output is considered a primary output and only the
faults covered in off-line random vector fault simulation
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Table (1): Experimental results
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Figure (10): Fault coverage and fault security

are targeted. The fault coverage achieved indicates the
percentage of faults that can be detected both on the
original and on the modified design, thus providing the
random on-line test fault security. The random vectors are
also fault simulated in the modified design targeting all
faults, in order to obtain the random on-line test fault
coverage. Figure (10) depicts the faults covered by each
experiment and the relations between them. Interestingly,
the on-line test may also detect faults that are not detected
by off-line test, since checking is performed at internal
circuit locations and not just at the primary I/Os.

The results are summarized in Table (1), where the area
overhead of the proposed scheme is also shown, assuming
only 2-input gates and an equivalent of four gates for each
flip-flop. To reduce the cost, the hardware used for the
transparency functions is combined and optimized and
only one output pin is used. The results demonstrate that
the proposed on-line test methodology achieves fault
security exceeding 90%, while keeping the area overhead
below 40%. In addition, the achieved random on-line test
fault coverage is only 6% worse than random off-line test
fault coverage. It is important to note that a large portion
of the undetected faults is due to primary I/O faults that no
invariance-based, on-line test methodology can detect.

9. Conclusion

A novel on-line test methodology for RTL controller-
datapath pairs is presented in this paper. Based on the
modular transparency of the datapath RTL components
and the algorithmic behavior imposed by the controller,
invariant paths are identified in the design. The capacity of
these invariant paths for on-line test is evaluated in terms
of fault security, activation frequency, and area overhead,
and a set of appropriate paths is selected. The compliance

of these paths to the invariant behavior is checked
whenever the latter is activated, thus providing an efficient
on-line test capability. By exploiting fine-grained design
invariance, the proposed methodology contributes a novel
on-line test direction,  applicable in general RTL circuits.
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A = {All Faults}

B = {Faults Covered by Random Off-Line Test}

C = {Faults Covered by Random On-Line Test}

A

B C

Random Off-Line Fault Coverage = |B| / |A|

Random On-Line Fault Coverage = |  C  | / |A|

Random On-Line Fault Security = |B∩C | / |B |


