Efficient Transparency Extraction and Utilization in Hierarchical Test'

Yiorgos Makris
Electrical Engineering Department
Yale University
New Haven, CT 06520

Abstract

We introduce a methodology for identifying transparency
behavior appropriate for hierarchical test, based on the
theoretical principles of transparency composition. Unlike
high level approaches that identify limited, coarse
transparency behavior, the proposed methodology is
capable of extracting a wide class of fine grained
transparency functions for arbitrary sub-word bit clusters.
The functions in this class can furthermore be rapidly
extracted on the fly and efficiently utilized for hierarchical
test translation, thus alleviating the exponential extraction
time and storage space requirements of exhaustive
approaches. The twin benefits of rapid, automated
extraction coupled with the expansion of utilizable
transparency scope deliver reduced DFT while enabling
cost-effective hierarchical test of high quality.

1. Introduction

Ever since in response to the rapidly growing
complexity of circuits, high level test approaches made an
appearance, they have been confronted with criticisms as to
their effectiveness, accuracy and practicality. While raising
the level of abstraction renders a rich trade-off space
between complexity and efficiency of the pertinent
methodologies, the ability of high-level test approaches to
exploit this space has been constantly disputed. Deep
skepticism typically surrounds high level testability
analysis, DFT, and test generation.

In an effort to address this skepticism, hierarchical test
[5,7,8,10] has been proposed as a hybrid scheme, wherein
low-level methods are utilized locally for each design
module, while high-level approaches are employed to
provide accessibility to the module boundary. Efficiency
and complexity issues are thus both addressed through this
divide and conquer scheme. Nevertheless, hierarchical test
is considered expensive, not because of test generation time
but rather due to heightened DFT requirements for module
accessibility. A significant portion of such DFT may be
unnecessary and is attributed to the limitations of current
high level methods in identifying accessibility behavior
inherently available in the design.

The current concept of transparency behavior, through
which module access is typically established, constitutes a
key factor of the limited success of hierarchical test. While
transparency has been thoroughly studied and defined
theoretically [1,2,6,9,11], only a limited subset is utilized in
practice [4,5,7,10]. This discrepancy amplifies the voices

Vishal Patel, Alex Orailoglu
Computer Science and Engineering Department
University of California, San Diego
La Jolla, CA 92093

of concern regarding the frugality of the resultant DFT
when hierarchical test approaches are applied [4,7,12]. In
order to address these concerns, we propose in this paper
an efficient transparency extraction and utilization method
that bridges the gap between the theoretical definition of
transparency and its practical applications.

2. Motivation

Hierarchical test relies on transparency paths in order to
access and test each module. Mathematically, surjective
functions are required for justifying test vectors to the
module under test, while injective functions are necessary
in order to propagate test responses from the outputs of the
module under test. Surjective and injective paths are
referred to in the literature as S-Paths and F-Paths
respectively [2], while bijective paths satisfying both
properties are referred to as T-Paths [1]. Several variations
of the basic surjective, injective, and bijective functions,
including Ambiguity Sets [9], Transparency Modes [11],
and Transparency Channels [6], have also been used.

Although in theory any surjective, injective or bijective
function is appropriate for hierarchical test, only a limited
class of simple functions is utilized in practice [4,5,7,10].
The most widely used function is the Identity function,
referred to as /-Path [1], which along with the Inversion
function is cognitively identified for RTL modules. The
functionality of arithmetic modules is also widely used,
although in practice it also degrades to the identity function
(addition by ‘0’, multiplication by ‘1’, etc.). In short, a
large class of inherent transparency is not being exploited,
resulting in excessive DFT to establish accessibility. But
what causes this discrepancy between the theoretical
definition of transparency and what is used in practice?

Practical usage of a transparency function is determined
by two factors, namely identification complexity and
utilization efficiency. Gate level transparency extraction is
computationally NP-hard [3], limiting exhaustive
algorithms to small circuits. Therefore, transparency is
typically identified from high-level HDL. This cognitive
-approach limits the scope to coarse signal entities and

A —4-—» G
ADDER #1 [—4—»
4—»
= B[7:4] DL ipti
c ~4j B=C'D
MULTIPLIER (—8
D —4 B[7:0] G=A+B[7:4]
— B[3:0 F=E+B[3:0]
4-»
ADDER #2 |[—4—»
E —4-» F

Figure (1): Example Circuit

“ This work is supported in part through a research grant from Intel Corporation and the University of California MICRO program.

1093-0167/01 $10.00 © 2001 IEEE

246

operators of the HDL, identifying only a few, word-level
transparency functions. As an example, consider ADDER
#1 in the circuit of figure (1). A simple cognitive approach
would identify in the HDL two bijective identity functions,
G=A if B[7:4]="0" and G=B[7:4] if A="0". A more
elaborate approach would possibly extend the class to the
32 functions G=A+k if B[7:4]='k’, k=0...15 and
G=B[7:4]+k if A="k’, k=0...15. However, there exist more
4-bit bijections through the adder that are not utilized. For
example, any 4 bits obtained by choosing either the A or
the B input for each bit position, biject to the 4 output bits
for every constant value on the remaining 4 inputs, adding
up to 256 bijections. While any one of these bijections is
equally appropriate for traversing through the adder,
cognitive approaches limit their scope to only 32 of them.

In addition, cognitive approaches are limited to word-
level transparency, which is neither always inherently
available nor always required. For example, in the module
MULTIPLIER of figure (1) there exists no inherent
bijection function that can justify all possible values at
B[7:0]. Yet there exist several 4-bit bijections through the
multiplier, which are adequate for justifying vectors to the
rest of the circuit, such as Bf3:0]=D if C='1l’, which
justifies vectors to ADDER#2. Furthermore, there exist
several bijections of width less than 4 bits. In short,
depending on the design connectivity, fine grained
transparency functions may constitute an important portion
of test paths, yet are omitted by cognitive approaches.

The usability of a transparency function in hierarchical
test is also affected by the efficiency of its utilization in test
translation. Since each local vector needs to be translated
into global design test, a compact representation of the
transparency functions is necessary. Otherwise, large
translation tables will be required, resulting in excessive
storage and search time for performing test translation. For
example, in the circuit of figure (1), the 32 cognitively
identified bijections may be stored compactly as arithmetic
operations through which test translation can be performed.
Storing arbitrary 4-bit bijections, however, requires tables
of 16 4-bit entries. For a large number of wide bijections,
table storage and translation time prove cumbersome.

While utilizing all possible transparencies is practically
infeasible, the class of word level functions currently used
imposes significant limitations on hierarchical test. In this
paper, we propose a methodology that examines for the
first time the inter-cell connectivity of the module in order
to extract a wide class of transparency functions that can be
efficiently utilized for test translation. In section 3, we
identify a set of sufficient conditions for transparency
composition, based on which a transparency extraction
algorithm is devised in section 4. Utilization of these
transparency functions for test translation is discussed in
section 5 and experimental data is provided in section 6.

3. Transparency Composition
We propose a transparency composition method based

solely on function classes and not the actual functions. We
distinguish functions into four classes according to their

inherent transparency behavior and we examine
transparency composition through combinations of classes.
Consider a function implemented by a cell, as shown in
figure (2)(a). The cell has a set of function inputs FI and an
additional set of condition inputs CI that activate the cell
function. Additionally, the cell has a set of function outputs,
FO, and an additional set of collateral outputs, CO, whose
value may be either constant or variable for the values of
FI and CI. Such a function could be defined for example on
a full adder cell, with FI={A}, CI={B, Cin}, FO={Z}, and
CO={Cout}. Functions implemented by such cells are not
necessarily independent of each other, as the possible
interconnection structures of figure (2)(b) reveal.
Furthermore, this dependence, which we refer to as
implication, can be bi-directional. We categorize the
function of figure (2)(a) into one of four classes, based on
whether it is bijective and on how the implication through

_ the CIs affects the bijection. In the following definitions, S,

and §; are the sets of all possible values of k-bit and I-bit
signals, respectively.
Type #1: The function is bijective and the shape of the
bijection is independent of the implication through Cls.
Urm=s,

Vxe$;
Type #2: The function is bijective for each constant value
on the Cls, but the bijection depends on the constant.

vyeS: |Jfxy)=$,
Vxe S,
Type #3: The function is bijective for some but not all
constant values on the CIs; the bijection may depend on the
constant. There exists at least one constant value for which
the function is not bijective.

Pes,: Urxy =S, adves,: | Jrxncs,
Vxe S, Vxe$,
Type #4: No constant value on the Cls makes the function
bijective.
Vyes;: Uf(X,)’)CSk
Vxe S,

Examples of the four function types are given in figure
(3). The question now is what conclusions can be drawn
about functions composed for each combination of the
above types. The answer is synopsized in Table (1), where
we can see that the composition of two Type #1 functions,
or a Type #1 and a Type #2 function always produces a

Function | Condition !

tnputs ® Outputs
Ft co
Function —_
- = e oo
Condition —Cin
Inputs k Function

< n Outputs z

FO +

R P54 SRS
@) T

i i 1 i
Fun(’:lion Funicvlioh‘| __{ Funftion }___| Funftiori]

] ! !
f g ! 9
1 7 &

Figure (2): Cell Function Definition and Cell Implications

247

(N) Never HI[((tive

Table (1): Bijection Composmon Pbsszbzlttte&

| | EAB|CD EAB|COD
I ° oooloo coofoo

00 1|11 00 1|11

e oc1o0f1o0 oi1o0|1o0
0% 101 ot 1|01

10000 100|011

1TOo 1|11 10111

3 i) 1t10]10 t 1001
1110 111j00

TYPE #1: AB Bijects to CD
Indepandent of E

TYPE #3: AB Bijects to CD
for E=0 but not for E=1

EAB [CD EAB/CD
ooo0fco ocoo|oo
00 1|11 001|111
o10{10 oto|oo
o1 1001 o1 1|11
10001 10010
10110 101[10
11011 110]01
11 1)oa 111{01
TYPE #2: AB Bijects to CD for both E=0 TYPE #4: AB Bijects to CD

§§

and E=1, but the bijection depends on E for neither E=0 nor E=1

Figure (3): Examples of Function Types

Fl 4 i Fl 8§, = {0,2%1}, §, = {0, ...,21}
kK o ! S, ={0, ..2™1). §. = {0, ... 21}
Function [*—M— Function = Jcr, o), vV, cS,
f b n—s g Vies,
T T
K Cl | = Ci (x), V. c s,.
Fov v ¢ v Fog vLer, ¢ ‘

Figure (4): Function Composition and Implication Sets

bijection; interestingly, the combination of a Type #1 and a
Type #4 function can be shown never to produce a
bijection, while the combination of two Type #4 functions
may turn out bijective! Theorems (1) through (3) prove
some of the aforementioned observations. All other
combinations may or may not produce a bijection. This is
exactly where the exponential nature of the problem lies,
since the only way to identify such bijections is to
exhaustively examine the composed function. In order to

expand the set of utilizable bijections, we devise a set of

conditions, which can be easily verified without examining
the composed bijection and under which the composed
function is guaranteed to be bijective. These conditions are
provided through the following theorems (4) and (5) and
corollaries (1) and (2). Consider the two functions, f and g,
of figure (4), where V; s the set of implicated values from g
to fand V, is the set of implicated values from fto g.

Theorem (1): Composition of two functions of Type #1
always produces a bijection.

Proof: If f and g are both of Type #1, then
Uf(x) =S, and Ug(y) =S, . The cross product
Vxe S; vyes;
results in Uf(x) X g(y)=S5§,XS,, which implies
Vx,ye S xS,

Uf X g(x,y)=S8,xS§,, thus proving composition
Vx,ve §; xS,
to a bijective function.

Theorem (2): Composition of a Type #1 and a Type #2
function always produces a bijection.

248

Proof: If f is of Type #1 and g is of Type #2, then
Uf(x)=Sk (1) and Vxe §, : Ug(x,y)=S,.

Vxe S, VyeS$;
But = UCIg (x), V, € S,, which implies
Vxes,;
vxe S, : | Jg(x,¥) =S, (2). Combining (1) and (2)
VyeS§,
results in Uf(x)Xg(x, ¥) =S, XS§,, which implies
Vx,ye 5, xS,

Uf xg(x,y)=S,xS,, thus proving composition
Vx,ye§; xS,
to a bijective function.
Theorem (3): Composition of a Type #1 and a Type #4
function always produces a non-bijective function.
Proof: If f is of Type #1, and g is of Type #4, then

Usx =S, ¢ and Vxe$,: [Jgx.mcS,.

Vxe S; Vyes,
But Vg = UCIg (x), Vg € S, , which means that
Vxe S,
Vxe S, : [Jg(x,) S, (4). Combining (3) and (4)
Vye§,;
results in Uf(x)X g(x,y) € §, XS§,,which implies
Vx,ye S xS,

UfXg(x, Y) <S8, XS,, thus proving that the
Vx,ye$; xS,
composition results in a non-bijective function.
Theorem (4): Composition of a Type #1 function f and a
Type #3 function g produces a bijection if g is bijective
PzeV,, where V, is the set of values implicated from fto g.

Proof: If f is a function of Type #1 and g is a function of

Type #3, then Uf(x) =S (5) and
Vxes,
FeS,: Ug(z,y) =5,Adz€e S, : Ug(z,y) cS, ®)
vhes; es;

Although Vg c S, given Z€ Vg , no inference can be

drawn regarding the possible equality of Ug(z, y) to
VyeS,

S, . However, if according to the hypothesis g is bijective

VzeV,, then VzeV,: Ug(z,y) =S,. Bu
Vve§,;
V.= |JCI,(x).50 Vxe S, : Jg(x.)=S, @
Vxe$, Vye§,

Use exhaustive algorithm to
BEGIN find all transparency
functions for each cell

Build & dependency graph
where each cell is a node and
each implication is an edge

For each combination of transparency
- - functions of the cells tobe composed | — — T T

l

Find the implication set
from the immediate
neighbouring cells

Are the tunction)
inputs either primary
inputs ar function outputs
of other functions 1o be,
composed?

Ara the function
‘outputs either primary’
outputs or function inputs

of other functions 1o be,
composad?

Find the type af the
tunction for this
implication set

Are all
tunctions of
Type #1 or

Combination
produces a
transparency
tunction

Is there a
cycle betwen
implications of
Type #27

[c.ABlcz
1 Bijections in the Cell
000(0 0
FULL 001|011 a) Ato Z, for any constant B, G (TYPE #3
—Cn% ADDER | °™* 010f0 1 b} B to Z, for any constant A, G, (TYPE #2)
0111 0) C, to Z, for any constant A, B (TYPE #2)
T 1000 1)G, 10 C,,,, for AB=01 or AB=10 (TYPE #3)
z 10110 6) B0 C,,. for AC,=01 or AC, =10 (TYPE #3)
' 110)1 0 1) Ato C_, for BC_=01 or BC,=10 (TYPE #3)
> G 2
11119
j oo | | |
A0 80 Al 81 A2 B2 A3 B
L " " i
CELL CELL CELL CELL
N m ") u [

| I 7 T

E: n 2 z

4 4 + }
Set A0, BO, B1, A2, B3 constants_- Sel

| #1 for Cells #2 and #4, and (b} for Cells #3
Dependency Graph

No Cyclic Dependency ;
C1+{0 1) C2e(0.1 G340 1) therefore,
Bijection is Composed

For A0, BO constant
Coll #1is of TYPE #1

Figure (5): Transparency Composition Algorithm
The combination of equations (5) and (7) implies that

Uf(x)xg(x,y)=S,(x 1+ SO LJfXg(x,y)=Sk><S,

Vix, ye§; x5, Vix, ye 8, XS,

and therefore the composition is bijective. This condition is
only sufficient but not necessary, because the implication
set V, may be further pruned if more than two functions are
composed. Finding the exact implication set requires costly
exhaustive examination of the composed function.

Theorem (5): Composition of a set of two or more
functions of Type #1 or Type #2 is bijective if the
implication between them is acyclic.

Proof: Since Type #1 functions are independent they cannot
be part of a cyclic implication. If the implication between
Type #2 functions is acyclic, there is at least one Type #2
function f that has implications only from Type #1 functions
&1 -8 Assume that the width of fis [and the widths of
g5 ...gk are my,...,my, respectively. Since fis of Type #2,

VYo Y € S, X XS, Uf(x, Vi V) =S5, (8)

Vxe§,
Since, g,,...,g; are of Type #1, we know that Vi € 1.k,
|Jg:(y)=S5,, (9). Combination of (8) and (9) implies

VyeSs,,

(U8 %X 8 (%, Yyessdi) = S XS, X XS,
V¥ g €S XS g X XS
Therefore, the Type #2 function f and the Type #1 functions
&1--- & compose into a Type #1 function f x g, X...x gi. As
a result, the implications from the Type #2 function, f, to
other Type #2 functions now reduce to implications from
the composed Type #1 function to Type #2 functions. In
addition, since the implication between Type #2 functions
is acyclic, there is again at least one Type #2 function that
has implications only from Type #1 functions. Therefore,
the above process is repeated until all functions are
composed into a Type #1 function, resulting in a bijection.
This condition is again only sufficient but not necessary.

Corollary (1): Composition of a Type #2 function fand a
Type #3 function g produces a bijection if g is bijective
VzeV,, where V, is the set of values implicated from fto g
and the implication between the functions is acyclic.

Figure (6): 4-Bit Carry Ripple Adder Example

Corollary (2): Composition of two Type #3 functions f and
g produces a bijection if g is bijective VzeV,, where V, is
the set of values implicated to g, f is bijective WveVy
where V; is the set of values implicated to f, and the
implication between the functions is acyclic.

Theorems (1) through (5), along with corollaries (1) and
(2), provide a powerful mechanism for reasoning on
transparency composition, based on which an efficient
extraction algorithm for a wide class of transparency
functions is devised in the following section.

4. Transparency Extraction Methodology

Composition of Type #1, Type #2, and Type #3
functions can be guaranteed to produce a bijection if the
associated conditions are satisfied.. Under these conditions,
Type #3 functions reduce to either Type #1 or Type #2 for
the implicated set of values, and the implication between
Type #2 functions is acyclic. Checking the conditions is
simple, facilitating an efficient transparency extraction
algorithm shown in figure (5). As mentioned earlier, the
conditions are only sufficient but not necessary; therefore,
not all possible bijections are identified. Type #4 functions
are also omitted, since they are inherently non-bijective for
any constant implication from the surrounding functions;
bijection could only be established through exhaustive
analysis of the composed function in this case. Yet the
algorithm is capable of extracting a wide class of bit-cluster
level transparency functions that are not cognitively
obvious, as the following examples demonstrate.

The first example circuit, shown in figure (6), is a
simple 4-bit carry-ripple adder on which a bijection that is
cognitively not obvious is identified. The basic cell and its
inherent bijections are shown, as well as the 4-bit adder
circuit and the dependency graph. Assume that we are
interested in finding a bijection to propagate inputs
{A3, B2, Al, CO)} through the adder. This points to the
composition of bijection (a) for cell #4, bijection (b) for
cell #3, bijection (a) for cell #2, and bijection (c) for cell
#1. The function inputs of all four bijections are primary
inputs of the circuit and the function outputs are all primary
outputs. For constant {AO, BO, B1, A2, B3}, bijection (c)
of cell #1 reduces to a Type #1 function, since there is no

Bijections inthe Oalt

3 Ao G forary constart B(TYFE #2)
b Bto G, forany consiant A(TYFE #2)

L]

Bijections in the MA Cells
) CtoT, if ABS={001 or 011 or 101 or 110} (TYPE #3)
e b)StoT, # ABC={001 or 011 or 101 or 110} (TYPE 3)
:) Cto P, for any constart ABS (TYPE #2)
d) Sto P, for any constant ABC (TYPE #2)

Bijection in the FA Cells

© 3 &) Bto Cous, #f ACIn={01, 10) (TYPE 3)
6 T Devendency Greph
B | &2
P2 o m on- oAl
o ¥ p3

T=(0,1}

Aos(G1)
SR
Ta=(0.1)

T4={0,1}
cary
40-'»@/

No Cyclic Dependency; theretore, Bijection is Corrposed

P2 P [ad
¥ we set A1A0=11, B1B0=01, S35150=110, C1=0, Cin=0, then:
1) Bijaction a) for MAD recices to TYPE #1

2) Bijection c) for MA2 s of TYPE #2
3) Bijection b) for MA raduces to TYPE #2
4) Bijection e) for FA2is of TYPE #2

In Composition :
From 1) and 2) C0 Bijects to T1 which Bijects to P1
From 3) and 4) S2 Bijects to T6 which Bijects to Cout
In Parallel Composition:

CoS2 Bjects though T1T6 to P1Cout

Figure (8): Multiply-Add Circuit Example

variable implication to the cell. The implication from the
immediate neighbors to cells #2 through #4 means that the
corresponding bijections remain of Type #2. Since all the
functions to be composed are of Type #1 or Type #2 and
there is no cyclic implication in the dependency graph, the
composition is a bijection.

Even though the proposed methodology has been
illustrated by utilizing cells, it does not fundamentally rely
on them as a cell may be construed to map to a single gate.
An example is shown in figure (7), where we demonstrate
the extraction of a bijection on a 2-bit carry ripple adder.
Under constant {BO, CO, Al}, the bit-cluster {B1, AO}
bijects to the bit-cluster {Z1, Z0}. The XOR gate has two
Type #2 bijections, and selecting bijection (a) for cell #1
and cell #2, and bijection (b) for cell #6 and cell #8, leads
to the dependency graph shown. Cell #1, cell #2, and cell
#6 are of Type #1, while cell #8 is of Type #2 due to the
variable implication from cell #5. Since the graph is
acyclic, a bijective function is composed. Composition is
performed both in parallel and in series, as for example for
bijection (a) of cell #1 and bijection (a) of cell #2.

The size of the cells, however, has a substantial impact
on the results. Small cells result in very fast exhaustive
identification of their transparencies but the algorithm has
to operate on a large number of primitives. Furthermore,
since the algorithm is not exhaustive, as the number of
primitives increases, fewer transparency functions are
identified. At the other extreme, a few very large cells
require a costly exhaustive transparency identification for
each cell, but the number of primitives becomes very small.
The basic cell, comprising a relatively small number of
gates and appearing repetitively in a circuit, constitutes a
highly desirable trade-off point for the size of the

250

exhaustive transparency identification problem and the
number of primitives for the composition algorithm.

The algorithm relies neither on homogeneity nor on
regularity and is similarly applicable to heterogeneous and
irregular circuits. Figure (8) shows such an example on a 2-
bit multiply-add circuit that comprises two different types
of cells and irregular interconnection. Through the
illustrated basic cell functions, a bijection is composed
from bit cluster COS2 to bit cluster P1Cout, in series and in
parallel, according to the algorithm outlined above.

While the algorithm and the examples have been based
on bijective functions, the methodology is readily
extendible to surjective and injective functions. Bijections
and surjections can be combined in order to compose
surjections, while bijections and injections can be
combined in order to compose injections. In short, the
algorithm identifies a wide range of fine-grained
transparency functions composed from cell functions,
providing hierarchical test approaches with a rich space of
rapidly extractable, fine-grained transparency.

5. Transparency Utilization for Test Translation

While the above methodology addresses transparency
extraction, we still need to answer the question of how
local to global test translation is performed through the
extracted functions. If a k-bit bijection is employed in a
hierarchical test path, a 2*-entry table needs to be stored on
which a search has to be performed for every vector. For
large values of k, both the storage space and the search time
required are inordinate and therefore in practice only
simple functions with closed form descriptions are used. A
modified ATPG algorithm could alternatively be employed
to perform test translation without storing the function
tables [7,10], but ATPG is also computationally complex.

In the proposed class of transparency functions, test
translation is significantly simplified. Since transparency is
composed from cell functions, we only need to store these
small functions and search within the small tables in a fast
ripple-like fashion. Starting from the cells that exhibit
Type #1 functions, we traverse the dependency graph in a
breadth-first manner to find the bits of the vector to be
translated corresponding to each cell. We then search in the
small cell function tables for the appropriate input values.
The table entry also pinpoints the implication to the next
cells in the dependency graph. This information is used
along with the desired output bits corresponding to the next
cell in order to find the corresponding input values; the
process continues in a ripple-like manner. In contrast to the
arbitrary bijection case, we thus reduce both the storage
and the search time required for the composed bijection.
Test translation within the outlined class of transparency
functions constitutes a fast and efficient methodology,
fundamentally reliant only on the size of the cell functions.

A test translation example is given in figure (9).
Assume that we want CDJKOPTU=01101101. In order to
store the 8-bit bijection, a 256-entry table is required, in
which a search has to be performed. With our approach,

| | | |
4 a b) M N a =
1 4 ' 4 1
CELL [—F CELL [CELL CELL |
" ? [#
T T | I [
¢ o M o e T
Voo ool) [
EAB{CDFG| VaR|TU FGHIjJKL MNGLQOP
000{0011 000 |00 00 00|00 1 60 000|01
0010011 001 |01 00 01|10 1 0t 000|10
010(0110 010 [10 00 10|11 0 10 000|111
ot1l1010 011 |11 00 11|01 1 11 000400
100/0100 100] 11 01 0010 1 00 001]|00
101)1000 101 |11 01 01} 11 0 01 001]01
t10{1110 110 | 00 ot 10[00 o 10 001[10
111/0010 111 |00 01 11{01 1 11 001[11
§ 10 00f 11 1 00 010]10
Cell #1:TYPE #3 10 01|00 0 01 01011
AB bijects to CD for E=1 10 10l 10 1 10 010|000
 Cell #2:TYPE #2 10 11]01 0 11 010|01
HI bijects to JK for any FG constant 11000t 0 °
Cell #3:TYPE #3 1101]30 0 oo orute
MN bijects to OP for GLQ={000...100, 111} 11 10|11 0 ?g g:: é?
Cell #4: TYPE #3 11 11100 1 11 011)11
QR bijects to TU for for V=0 90 100|800
01 100(10
Rependency Graph 10 100} 11
1
ForE=t For FG={00,01} For G=0,L=(0,1), For V=0 Cell #4 ;; :f,’? ?,
Cell #1 raduces Cell #2 reduces Q=(0,1} Cell #3 reduces to 01 101]11
toTYPE#1 toTYPE#2 reduces to TYPE #2 TYPE #1 10 101|00
11 101|00
. Fas(c0, Lo 00 110/ 01
@ 0 ' oo o1 11001
/' 10 110{10
‘Constant Ged 11 110110
00 t11f00
To activate Bijection, set E=1, V=0 01 tt1[01
) 10 11110
No Cyclic Dependency; therefore, Bijection is Composed 1 ? 111011

Figure (9): Test Translation Example

only the four tables of the much smaller cell functions need
to be stored and the translation proceeds as follows: we
want CD=01 and CD is produced by cell #1, so we search
the cell #1 table and we find AB=00, which sets FG=00.
With FG=00 we search the cell #2 table to get JK=01 and
we find HI=01, which gives L=1. Cell #4 produces TU, and
we want TU=01, so we search the cell #4 table and we find
QR=01 which gives Q=0. With Q=0 and L=1 and G=0, we
search the cell #3 table to get OP=11, and find MN=01.
The final translation is ABHIMNQR=00010101.

6. Experimental Results

The proposed methodology, as well as an exhaustive
gate-level bijection extractor have been implemented and
applied on several circuits and the results compared in
Table (2). As shown, the time required by the exhaustive
method grows rapidly as the circuit bitwidth increases.
Furthermore, the large number of bijections requires
inordinate storage. The proposed methodology, on the
other hand, identifies most of the bijections in a very short
time and with negligible storage, since only cell bijections
are stored from which the rest is composed on the fly. For
the adder circuit the proposed method rapidly identifies all
possible bijections. While not all possible bijections are
identified for the multiply-adder and the random example
circuit of figure (9), the method composes a very large
class of bijections fast and with minimal storage needs.

istive Extraction

& P d Method

ropose

7. Conclusion

Cost-effective hierarchical test requires identification and
utilization of inherent module accessibility behavior before
resorting to expensive DFT. Given the NP-hard nature of
gate-level transparency extraction, current practice limits
the scope of transparency to a very small set of functions
that can be extracted from high level HDL descriptions.
However, such coarse, cognitively identified functions are
neither always available nor consistently required. The
methodology described in this paper provides a radically
new approach for transparency extraction. Based on a
theoretical analysis of transparency composition, the
proposed algorithm extracts on the fly a wide class of
transparency functions. Unlike the transparency functions
identified by current approaches, this class comprises a
large number of fine-grained bijéctive, surjective, and
injective functions that are not necessarily cognitively
straightforward. These functions are efficiently utilized for
test translation, providing hierarchical test methods with a
rich space of rapidly extractable and inexpensively
utilizable transparency.

References

{11 M. S. Abadir, M. A. Breuer, “A Knowledge-Based System
for Designing Testable VLSI Chips”, IEEE Design and Test
of Computers, vol. 2, no. 4, pp. 56-68, 1985.
S. Freeman, “Test Generation for Data-Path Logic: The F-
Path Method”, IEEE JSSC, vol. 23, no. 2, pp. 421-427, 1988.
M. R. Garey, D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, pp. 259-263, W.
H. Freeman, 1979.
I. Ghosh, A. Raghunathan, N. K. Jha, “A Design For
Testability Technique for RTL Circuits using Control/Data
Flow Extraction”, IEEE Trans. on CAD, vol. 17, no. 8, pp.
706-723, 1998.
J. Lee, J. H. Patel, “Hierarchical Test Generation under
Architectural Level Functional Constraints”, IEEE Trans. on
CAD, vol. 15, no. 9, pp. 1144-1151, 1997.
Y. Makris, A. Orailoglu, “RTL Test Justification and
Propagation Analysis for Modular Designs”, JETTA, vol. 13,
no. 2, pp. 105-120, 1998.
Y. Makris, J. Collins, A. Orailoglu, P. Vishakantaiah,
“TRANSPARENT: A System for RTL Testability Analysis,
DFT Guidance and Hierarchical Test Generation”, CICC, pp.
159-162, 1999.
B. T. Murray, J. P. Hayes, “‘Hierarchical Test Generation
Using Precomputed Tests for Modules”, /EEE Trans. on
CAD, vol. 9, no. 6, pp. 594-603, 1990.
B. T. Murray, J. P. Hayes, “Test Propagation through
Modules and Circuits”, ITC, pp. 748-757, 1991.
{10] R. S. Tupuri, A. Krishnamachary, J. A. Abraham, “Test

Generation for Gigahertz Processors using an Automatic

Functional Constraint Extractor”, DAC, pp. 647-652, 1999.

(2]
(3]

(4}

{5]

(6]

7

[8]

9

e soc) {11] P. Vishakantaiah, J. A. Abraham, M. S. Abadir, “Automatic
e Test Knowledge Extraction From VHDL (ATKET)”, DAC,

Adder-4 5.1 16,080 3.4 pp. 273-278, 1992.

Adder-6 ERPVRET 851.3 | 1,220,544 43.7 | (12) P. Vishakantaiah, T. Thomas, J. A. Abraham, M. S. Abadir,
Muladd-2 47,750 36.6 34,247 12.6 “AMBIANT: Automatic Generation of Behavioral
Muladd-3 5,415,937 40,6402 | 3,927,542 1072.9 Modifications for Testability”, ICCD, pp. 63-66, 1993.
Figure (9) 64,046 51.2 42,746 15.7

Table (2): Comparative Experimental Results

251

