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Abstract— We discuss the design of a neural system that learns
to separate nominal from faulty instances of an analog circuit in
a low dimensional measurement space. The key novelty of the
proposed system is that it successively establishes a separation
hypersurface of order that adapts to the intrinsic complexity
of the problem. Thus, it performs excellent classification even
in the presence of complex distributions. The test criterion for
classifying a circuit is simply the location of its measurement
pattern with respect to the separation hypersurface. Despite its
simplicity, this criterion is, by construction, strongly correlated
to the performance parameters of the circuit and does not rely
on fault models.

I. INTRODUCTION

Implicit functional test methods [1], [2], [3], [4], [5] ad-
vocate a learning-based approach to the problem of analog
circuit testing. Such methods examine whether a circuit meets
its specifications without explicitly measuring its performance
parameters and without assuming a prescribed fault model that,
inevitably, induces a bias [6]. Rather, they rely on a learning
process that involves a small set of fully characterized circuit
instances, called training set. This learning process utilizes a
low dimensional discriminative set of measurements obtained
on each training instance and culminates in test criteria that
correlate these measurements to the performance parameters
of the circuit. Once these test criteria are established, the same
measurements suffice to examine a new circuit instance with
regards to compliance to its specifications. Thus, test applica-
tion time and cost are significantly reduced, as compared to
the traditional functional test method, which is now necessary
only to characterize the circuits in the training set. Ultimately,
the objective of implicit functional test methods is to construct
criteria that classify correctly previously unseen instances, i.e.
that exhibit good generalization performance.

Towards this direction, the methods proposed in [1], [2],
[3] separate the populations of nominal and faulty instances
of the training set in a measurement space, x̃ ∈ �d, by a set
of M hyperplanes, bi, i = 1, ..,M , where M is the number
of single-ended specifications of the circuit. The union of
these hyperplanes divides the measurement space into regions
An and Af ,

⋃M
i=1 bi : x̃ �→ (

An, Af
)
. A decision on a

new circuit instance is made based on the region that its
measurement pattern falls in. Circuits that fall into An (Af )
are classified as nominal (faulty). However, as we show in the

following section, the separation boundary of the two regions
is, in general, non-linear1, and a crude approximation with
hyperplanes may result in a high percentage of misclassified
circuits. Furthermore, we show that individually optimizing
these hyperplanes amplifies the classification error.

In [5], the authors developed a two-layer neural network
that potentially can draw separation boundaries of any order.
However, the network topology (i.e. the number of hidden
units) that generalizes well on new circuit instances is not
known a priori and can only be identified by a trial and error
procedure that requires significant computational effort.

As opposed to [1], [2], [3], in this work, we develop a
neural classifier that separates nominal from faulty instances
of a circuit in a measurement space, by allocating a single
hypersurface that can be of arbitrary order, b : x̃ �→ (

An, Af
)
.

As opposed to [5], the proposed neural classifier is constructed
successively, in a way that enables it to adaptively acquire
the necessary network connectivity that produces a separation
boundary of appropriate order. This particular architecture
provably converges to a boundary that yields perfect separation
of the circuits in the training set. Once this is achieved, the
network is pruned down to the level where it achieves the best
generalization on a validation set.

The remainder of this paper is organized as follows. In
section II, we provide further motivation for this work and
we pinpoint its novel contributions. In sections III and IV, we
present the neural network topology and its learning algorithm.
In section V, we implement a measurement selection algorithm
that finds discriminative sets of measurements within an initial
set. Our method is validated on a state variable filter in section
VI.

II. CONTRIBUTIONS OF THE PROPOSED METHOD

Fig. 1(a) to (c) illustrate a few distribution examples in a
two-dimensional measurement space x1 − x2. These scatter
plots were obtained by performing a realistic Monte Carlo
analysis, letting various parameters of the circuit follow a
normal distribution centered at their nominal values. Each data

1We note that the non-linearity of the decision boundaries was first
mentioned in [4], where regression is applied to approximate the non-linear
function f̃ : x̃ �→ p̃ that maps the measurement pattern, x̃, to the performance
parameter vector, p̃.
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Fig. 1. Distributions of nominal and faulty instances for the state variable filter with M = 6 that appears in section VI. (a) Piecewise linear approximation
of the acceptance region. (b) Individual boundaries are, in general, non-linear. (c) Allocating boundaries individually induces an error.

point represents the measurement pattern of a Monte Carlo
pass.

In Fig. 1(a), instances are labelled as nominal if they satisfy
all specifications and faulty otherwise. It can be seen that
the acceptance region is bounded by an ellipsoid, such that
a single linear boundary would completely fail to separate
the two distributions. To overcome this problem, methods in
[1], [2], [3] decompose the classification task into M parts,
where M is the number of single-ended specifications. In
particular, for each single-ended specification, µ, a hyperplane,
bµ, is allocated in the measurement space, such that the
maximum possible separation between nominal and faulty
instances in the training set (with respect to specification µ) is
obtained. In essence, each hyperplane bµ creates two regions
An (µ) and Af (µ): instances that fall into An (µ) (Af (µ))
are classified as nominal (faulty) with respect to specification
µ. Therefore, M two-class separation problems are solved in
parallel. The overall acceptance region is approximated by
the union

⋃M
µ=1 An (µ). Since the M individual boundaries

are linear, the resulting approximation is piecewise linear, as
shown in Fig. 1(a). The misclassification error of this approach
can be broken down into two factors.

The first factor corresponds to patterns that are misclassified
across the acceptance region boundaries due to the insuffi-
ciency of the linear approximation. For instance, consider the
two populations in Fig. 1(b), whose patterns are labelled with
respect to one single-ended specification. The actual decision
boundary is non-linear and a simple linear approximation leads
to high misclassification.

The second factor stems from optimizing the location of
each of the M boundaries individually. In particular, each

boundary is allocated such that it minimizes misclassification
throughout the entire area of patterns. Thus, it also tries
to minimize misclassification in areas that are distant from
the actual acceptance region. In these areas, correct classifi-
cation is interpreted as mapping the patterns into the right
faulty class. This, however, is unnecessary and, in addition,
it degrades the classification ability of the system around the
acceptance region boundary, where the unique nominal class
is separated from the 2M − 1 faulty classes. To view this,
consider Fig. 1(c), where Fig. 1(a) is redrawn showing the
boundary of the acceptance region and the patterns distributed
across boundaries b5 and b6 only. It can be seen that boundaries
b
′
5 and b

′
6 would yield a better classification with regards to all

specifications. Yet the system chose b5 and b6 in place of b
′
5

and b
′
6 because, with respect to individual specifications, b5

and b6 provide better classification throughout the measure-
ment space. In short, instead of solving M distinct two-class
separation problems in parallel, as in [1], [2], [3], it would be
preferable to only tune the boundary around the acceptance
region. However, this requires a classifier capable of drawing
highly non-linear boundaries (an ellipsoid in the case of Fig.
1(a)).

In this work, we will be describing the architecture of a
neural network that employs the instances in the training set
to construct a single decision boundary that can be of arbitrary
order.

III. NEURAL NETWORK TOPOLOGY

The neural system is trained using N fully characterized
circuit instances. Each instance is associated with a boolean
variable, t, indicating whether it satisfies all specifications or
violates at least one, and a d-dimensional measurement vector,
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Fig. 2. Topology of the neural network.

x̃ ∈ �d. The training set
(
x̃1, t1

)
,
(
x̃2, t2

)
, ...,

(
x̃N , tN

)
is used to optimize the adaptive parameters of the neural
network. The cost function for this optimization is the clas-
sification rate achieved on the circuit instances in the above
set.

Since the shape of the acceptance region boundary is not
known a priori, assuming a fixed network topology limits
the range of feasible boundaries. Instead, the proposed neural
classifier learns the boundary constructively, starting with the
input layer and dynamically adding layers until it matches the
intrinsic complexity of the problem at hand. A comprehen-
sive general discussion on constructive algorithms for neural
networks can be found in [7].

In particular, the proposed neural classifier is constructed
using the pyramid algorithm [8] that successively places layers
of single neurons above existing ones. The first neuron, y1,
receives inputs from the d measurements. Each successive
neuron, yk, receives inputs from the d measurements and from
each neuron below itself. In order for the algorithm to handle
the real-valued measurements, each neuron above the first
layer also receives an extra attribute that is the projection of the
d-dimensional measurement vector onto a parabolic surface:

xd+1 =
d∑

i=1

x2
i (1)

Each newly added neuron takes over the role of the output
neuron and the network growth continues until a satisfactory
solution for the learning problem is found. The complete
architecture of the network is shown in Fig. 2.

The neuron model used herein is an �-input threshold
logic unit, also known as perceptron [9], that computes the
threshold function of the weighted sum of its inputs ṽi ∈ ��:
yi(x̃) = −1 for w̃T

i ṽi ≤ 0 and yi(x̃) = +1 for w̃T
i ṽi > 0.

w̃T
i = [wi0 , wi1 , ..., wi�

] is the adaptive weight vector and the
weight wi0 is referred to as the bias. Here, ṽ1 = x̃, ṽi =
(x̃, xd+1, yi−1, ..., y1) for i > 1 and w̃T

1 = [w10 , w11 , ..., w1d
],

w̃T
i =

[
wi0 , ..., wid+1 , wi,yi−1 , ..., wi,y1

]
for i > 1. If the +1

and −1 refer to the pass and fail decisions respectively, then,
we want to select weights such that w̃T

i ṽn
i > 0 for all x̃n ∈ Cn

and w̃T
i ṽn

i < 0 for all x̃n ∈ Cf , where Cn and Cf denote the
nominal and faulty classes. Letting t be tn = +1 for x̃n ∈ Cn

and tn = −1 for x̃n ∈ Cf , the inequality:

(
w̃T

i ṽn
i

)
tn > 0 (2)

should hold for all measurement patterns, in order for the i-th
output neuron to separate the training distributions perfectly.
The perceptron has a simple geometrical representation: it
divides its input space by a hyperplane, such that the activation
function is yi = +1 on one side of the hyperplane, and
yi = −1 on the other side. Therefore, at the i-th layer, the
populations of nominal and faulty circuits are divided by a
boundary, fi, composed of the set of solutions to equation
w̃T

i ṽi = 0. Because of the extra attribute in (1) and the input
from the preceding neurons, this boundary is non-linear in the
original space of measurements.

This constructive algorithm produces a sequence of bound-
aries {fn} that converges, in the limit, to the boundary of the
acceptance region, f , as closely as desired, i.e. limn→∞||f −
fn|| = 0 [8].
Convergence proof For each pattern, x̃p, define
εp = minq �=p

∑d
i=1 (xp

i − xq
i )

2 and k =
maxp,q

∑d
i=1 (xp

i − xq
i )

2
> εp. Suppose that pattern x̃p

is misclassified at the (i − 1)-th layer, i.e. yi−1(x̃p) = −tp.
Then, if we select the following weights:

wi0 = tp


k + εp −

d∑
j=1

(
xp

j

)2




wij
= 2tpxp

j , j = 1, .., d

wid+1 = −tp

wi,yi−1 = k

wi,yj
= 0, j = i − 2, i − 3, ..., 1

the net input of the i-th neuron is:

Ip
yi

= wi0 +
d+1∑
j=1

wij
xp

j +
i−1∑
j=1

wi,yj
yj(x̃p)

= tp


k + εp −

d∑
j=1

(
xp

j

)2


 +

d∑
j=1

2tp
(
xp

j

)2

−tp
d∑

j=1

(
xp

j

)2 + kyi−1(x̃p)

= tpεp
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Since Ip
yi

tp > 0, the pattern x̃p is correctly classified by
the new layer i. Consider now the pattern x̃q �= x̃p that is
correctly classified at layer (i − 1), i.e. yi−1(x̃q) = tq . Then,

Iq
yi

= wi0 +
d+1∑
j=1

wij
xq

j +
i−1∑
j=1

wi,yj
yj(x̃q)

= tp


k + εp −

d∑
j=1

(
xp

j

)2


 +

d∑
j=1

2tpxp
jx

q
j

−tp
d∑

j=1

(
xq

j

)2 + kyi−1(x̃q)

= tp
(
k + εp − ε

′)
+ ktq

where ε
′

=
∑d

i=1 (xp
i − xq

i )
2

> εp and, thus, 0 < k
′

=
k + εp − ε

′
< k. Therefore, Iq

yi
tq =

(
tpk

′
+ ktq

)
tq > 0,

which means that the pattern x̃p continues to be classified
correctly after the addition of layer i.

The above proof shows the existence of weights that will
reduce the misclassification error whenever a new layer is
added to the network. In the following section we discuss a
training algorithm that finds such weights. Since the number of
training patterns is finite, eventual convergence to zero errors
is guaranteed.

IV. LEARNING

In order to minimize circuit misclassification at layer i,
equation (2) suggests that we select a weight vector w̃i that
minimizes the following error function, which is known as
perceptron criterion:

Eperc(w̃i) = −
∑

x̃n:yi(x̃n) �=tn

(
w̃T

i ṽn
i

)
tn (3)

Here, the summation is over all patterns in the training set that
are misclassified by the current weight vector w̃i. The error
function is the sum of a number of positive terms and is equal
to zero if all patterns are correctly classified. The search in
the space of weights is performed by applying the thermal
perceptron learning rule [10]:

w
(τ+1)
ij

= w
(τ)
ij

+
α

2
ṽn

j (tn − yi(x̃n)) e
−|yi(x̃n)|

T (4)

where α > 0. This corresponds to a simple learning procedure:
we cycle through all patterns in the training set and test
each pattern in turn using the current set of weight values.
If the pattern x̃n is correctly classified then we proceed to the
next, otherwise, we add αṽn

j e−|yi(x̃
n)|/T to the current weight

vector if x̃n ∈ Cn, or we subtract αṽn
j e−|yi(x̃

n)|/T if x̃n ∈ Cf .
It can be seen that this procedure successively reduces the error
in (3) [9].

The exponential tail in (4) controls the correction of weights
based on the location of the misclassified pattern x̃n with
respect to the decision boundary. |yi(x̃n)| is a measure of
this distance. In turn, the temperature T controls how strongly
the changes are attenuated for large values of |yi(x̃n)|. As an
intuition, one can imagine a zone surrounding the decision

x2

x
1

Nominal Circuits Faulty Circuits

Fig. 3. Adding measurement x2 does not provide additional discrimination
ability over x1. Both measurements are samples of the response of the state
variable filter when it is configured to oscillate [13].

boundary. The boundary moves only if an erroneously classi-
fied pattern falls within this zone. The temperature is annealed
from an initial value To to 0, causing a gradual reduction of
the extent of the sensitive zone. In the limit of T → 0, the
zone disappears altogether and the perceptron is stable, i.e. its
training has been completed. Best results are obtained when
α is reduced from 1 to 0 at the same time as T is. The reader
is referred to [10] for the rationale supporting this approach.

The thermal learning rule outperforms other known per-
ceptron based learning algorithms [11], provided that the
temperature is chosen appropriately. In particular, T should
be of the same order of magnitude as the range of values
of yi(x̃n). We followed the suggestion in [12]. T decreases
from To (initially 1) to 0 during 500 cycles through the
training set. Since yi(x̃n) might vary considerably for different
instances, we calculate the average value of |yi(x̃n)| over
the set of instances, 〈|yi(x̃n)|〉n, over each cycle. At the end
of each cycle, To is set to To = (2To + 2 〈|yi(x̃n)|〉n) /3.
The temperature T is then set to γTo, where γ (initially 1)
decreases linearly with each cycle to reach 0 after 500 cycles.
α is set to 0.1T/To.

V. SELECTION OF MEASUREMENTS

Increasing the dimensionality of the measurement space
does not necessarily improve classification. For instance, the
added measurement may be strongly correlated to the current
set of measurements. This is illustrated in Fig. 3 where, in
essence, the two populations fall upon each other. Moreover,
increasing the dimensionality of the measurement space may
lead to the point where the distributions are very sparse, in
which case the boundary representation will be poor. This phe-
nomenon, which has been termed as curse of dimensionality
[9], will cause an adverse effect on the generalization perfor-
mance. Therefore, the separation problem should be solved in
a measurement space that is both highly-discriminative and
low-dimensional.

The problem of selecting the most effective d
′

measure-
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TABLE I

THE STATE VARIABLE FILTER HAS SIX SINGLE-ENDED SPECIFICATIONS.

Performance parameter Specification limits

Dc gain (in V ) 0.9 − 1.1

Maximum gain (in V ) 1.0 − 1.3

f3db (in KHz) 1.83 − 2.23

ments from a given set of d measurements, d
′

< d, is
called feature selection. We implemented a method called
floating search [14]. A comparative study [15] shows that this
method yields near-optimal results, yet is much faster than
other feature selection approaches based on branch-and-bound
algorithms.

The algorithm uses two basic procedures, namely the se-
quential forward selection (SFS) and the sequential backward
selection (SBS). Given a subset of measurements, SFS selects
from the remaining measurements and includes the one that is
the most significant with respect to this subset. Similarly, SBS
selects from the current subset of measurements and excludes
the one that is the least significant with respect to this subset.
Each measurement subset, Xi, is evaluated on the training set
by the Fisher criterion [9], which examines class separation by
projecting the two populations on the one-dimensional space
that maximizes the distance of their means and minimizes the
within-class scatter:

J (Xi) = max
ũ

ũT SBũ

ũT SW ũ
(5)

where SB and SW are the between-class and within-class
covariance matrices respectively. The criterion is calculated
with respects to each single-ended specification separately and
is then averaged over all specifications. This is necessary in
order to account for distributions with equal means, such as the
one in Fig. 1(a). A subset, Xi, is deemed better than another
subset, Xj , if and only if J (Xi) > J (Xj). The algorithm
is a bottom-up search procedure which starts with an empty
feature set and includes new features by means of applying the
basic SFS procedure. The feature inclusion phase is followed
by a series of successive conditional exclusions of the worst
feature in the newly updated set through the SBS procedure,
provided that further improvement can be made to previous
sets of lower cardinality. Upon termination, the algorithm
reports the best identified subsets of d

′
measurements for every

d
′ ∈ {1, ..., d − 1}.

VI. SIMULATION RESULTS

In this section, the proposed classification method is evalu-
ated on a state variable filter [16]. The list of specifications is
given in Table I. The course of the experiment is as follows:

1) Our experiment starts with an initial set of thirty mea-
surements. We obtained this set by applying a realistic
statistical simulation of the circuit and identifying test
stimuli responses (and their respective sampling times)
which are the most sensitive to process variations [17].
Various types of measurements are examined in this

analysis: ac, dc, impulse response, frequency and magni-
tude of oscillation [13]. The generalization performance
of our classifier is bounded by the discrimination ability
of this initial set of measurements.

2) We then obtain the circuit instances that constitute the
training and the validation set for the classifier. In a
production environment, the training set will comprise
a small number of circuits that will be exhaustively
tested through traditional specification test and on which
the selected measurements will be carried out. For the
purpose of this experiment, we generate these circuit
instances through a Monte Carlo simulation with 3000
runs. One third of these instances is used as the training
set and the rest as the validation set. Parameters are
modelled by a normal distribution centered at their
nominal value with a deviation of 10%.

3) The vector (x̃n, tn) is computed for each circuit instance
n and is subsequently normalized. Normalization is
required for the comparison of different subsets of mea-
surements through the criterion in (5) and, moreover, it
speeds up in practice the training phase of the classifier.

4) The normalized training patterns serve as input to the
feature selection algorithm, which searches for efficient
measurement subsets. Upon completion, the algorithm
reports the best subset of d

′
measurements that it has

identified for every d
′ ∈ {1, ..., 29}.

5) The validation set is split in two equal sets, namely
the hold-out set and the test set. For each best subset
of d

′
measurements, and for every d

′ ∈ {1, ..., 30},
we train the neural network and, at each layer, we
record the classification rate on the training and the
hold-out sets. The growth of the network stops when
all training patterns are classified correctly or when it
reaches the 100-th layer. At the end of training, we
prune the network down to the layer that has the highest
generalization on the hold-out set. The generalization
ability of the classifier is assessed at this layer by
measuring its accuracy on the test set. It is important
to note that the test set is unbiased since it is not used
at all during training.

6) For comparison purposes, we also implemented the
two-layer neural network in [2], [3] that partitions the
measurement space with individual hyperplanes, one for
each single-ended specification, and then obtains their
union to approximate the acceptance region. The neural
network was trained using the thermal perceptron rule
for each best subset of d

′
measurements and for every

d
′ ∈ {1, ..., 30}. At the end of training, the network

reports the classification rate on the training and the
validation sets obtained in step 2 (half of the validation
set is used here). We note that, in practice, these rates
are similar to the ones achieved by the classifier in [1]
since the latter also considers the union of individual
hyperplanes. In the following, [1], [2], [3] are referred
to as linear methods.
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Table II shows the classification rate achieved on the training
and validation sets for the proposed classifier and for the linear
methods. The experiment illustrates the following:

1) Upon completion of construction, the proposed classifier
achieves almost perfect classification on the training set.
This is expected since the final boundary can be of arbi-
trary order. The respective classification rates achieved
by the linear methods are lower due to the limited
flexibility of the hyperplanes. The rate in brackets in
the fourth column refers to the accuracy of training at
the layer where the best generalization on the hold-out
set is observed. As a result of pruning, this rate is no
longer close to 100%.

2) The proposed network achieves the highest general-
ization rate for the best subset of three measurements
(94.9% of new instances are classified correctly), which
is considerably higher than the maximal generalization
rate for linear methods, achieved for the best subset of
ten measurements (89.3% of new instances are classi-
fied correctly). The underlying reasons that the linear
methods misclassify a larger number of circuits were
discussed in section II.

3) The classification rate on the training set increases
monotonically with the number of measurements, i.e.
J(X+) ≥ J(X), where X and X+ denote sets of
measurements, with |X| ≤ |X+|. However, for the
selected best subsets of measurements, monotonicity
is not satisfied on the validation set. In particular,
regarding the proposed classifier, the classification rate
on the validation set presents a peak, which verifies the
existence of the curse of dimensionality. Regarding the
linear methods, the classification rate on the validation
set oscillates for subsets of cardinality larger than four.
We attribute this to the fact that the validation peak
occurs at subsets of different cardinalities for each of
the M two-class problems. Thus, the resulting validation
curve is not convex. This manifestation of the curse
of dimensionality suggests that, for this type of test
methods, an efficient combination of measurements is
desired, rather than a large set.

VII. CONCLUSION

We designed a neural system that learns test criteria for
analog circuits through a small set of fully characterized
circuit instances. These test criteria translate into a single
hypersurface in a low dimensional measurement space. We
demonstrated that a single hypersurface offers great advan-
tages over the union of distinct hyperplanes used in previously
reported methods. A circuit is tested by examining the location
of its measurement pattern with regards to the hypersurface.
Since the latter is learned through fully characterized circuit
instances, this simple test is strongly correlated to the circuit
specifications and does not depend on underlying fault-model
assumptions.

TABLE II

CLASSIFICATION RATES FOR THE STATE VARIABLE FILTER.

Linear Methods Proposed Constructive Method

# of train. valid. train. set test net. size

meas. set set (pruned net.) set (in layers)

1 41.2 41.5 86.0 (82.4) 79.8 54

2 74.6 72.4 98.5 (93.4) 91.8 26

3 84.5 83.6 99.5 (97.3) 94.9 10

4 90.2 88.2 99.5 (92.1) 92.1 15

5 90.7 87.2 99.9 (94.8) 90.9 12

6 91.0 88.8 99.8 (90.0) 87.9 10

7 91.2 87.6 99.9 (91.2) 85.0 11

8 91.2 88.6 99.7 (88.9) 84.7 5

9 91.3 88.8 99.8 (86.8) 84.6 2

10 91.6 89.3 99.8 (86.8) 84.6 5
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