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Abstract— Numerous machine-learning-based test methodolo-
gies have been proposed in recent years as a fast alternative
to the standard functional testing of mixed-signal/RF integrated
circuits. While the test error probability of these methods is
rather low, it is still considered prohibitive for accurate pro-
duction testing. In this paper, we demonstrate how to minimize
this test error probability and, thus, how to bridge the accuracy
of functional and machine-learning-based test methods. The
underlying idea is to measure the confidence of the machine-
learning-based test decision and retest the small fraction of
circuits for which this confidence is low via standard functional
test. Through this approach, the majority of circuits are tested
using fast machine-learning-based tests, which, nevertheless, are
equivalent to the standard functional ones with regards to test
error probability. By varying the acceptable confidence level, the
proposed method enables exploration of the trade-off between
test time and test accuracy.

I. INTRODUCTION

While functional testing of mixed-signal/RF circuits is
highly accurate, it involves elaborate measurement procedures
that incur an often-prohibitive cost. As an alternative, machine
learning inspired a new test paradigm, wherein the results
of functional testing are inferred from a small number of
measurements [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17]1. This inference is based on
learning the complex mapping between the few measurements
and the functional test results, which is achieved by mining the
knowledge contained in a characterized set of circuit instances
(training set). In particular, test methods based on machine
learning explore two directions. In the first direction [1], [2],
[4], [5], [10], [16], [17], the nominal and faulty training circuit
instances are projected on the space of measurements and
a hypersurface is allocated to separate them. A new circuit
is, subsequently, tested by simply examining the location of
its measurement pattern with respect to this hypersurface. In
the second direction [3], [6], [7], [8], [9], [11], [12], [13],
[14], [15], multivariate adaptive regression splines (MARS)
[24] model the functions that map a measurement pattern to
the performance parameters of the circuit. A new circuit is,
subsequently, tested by processing its measurement pattern
through these functions, obtaining its performance parameters,
and comparing to the circuit specifications.

1Machine learning was first used for fault diagnosis purposes [18], [19],
[20], [21], [22], [23]; however, this field of application suffers from the lack
of representative and widely accepted analog fault models.

These machine-learning-based test methods offer a fast
alternative to the standard functional test, yet their accuracy
is not up to par due to the inherent discontinuity between
the nominal and faulty distributions. In extensive experiments
with various circuits and measurement spaces, the test error
probability of the ontogenic neural classifier proposed in [1],
the most advanced solution in the first direction, never drops
below 2%. Similar percentages are reported for the MARS-
based methods2. Therefore, additional care is necessary in
order to make machine-learning-based test competitive. In
essence, what is needed is a method that identifies the circuit
instances that have a high probability of misclassification,
along with a less error-prone strategy for testing them.

In this paper, we propose such a method for the
hypersurface-based test solution, which we demonstrate by
extending the ontogenic neural classifier proposed in [1]. The
underlying principle is to allocate two hypersurfaces (guard-
bands) instead of one, thus creating a trichotomy of the
measurement space, where an ambivalent region is interjected
in between the nominal and faulty regions. In the outer sides
of the guard-bands, either the nominal or the faulty circuit
population dominates and, therefore, circuits falling therein
are classified to the corresponding class with high confidence.
In contrast, circuits falling in the guard-banded region are
suspect to misclassification. These circuits are identified and
retested through the standard functional test approach, in order
to provide test decisions with high confidence throughout the
entire circuit population. In short, the majority of circuits
are tested through the fast machine-learning-based approach,
while a small fraction is retested through the lengthier func-
tional test method. Thus, the proposed method is overall faster
than functional test, yet without sacrificing the accuracy of the
test decisions. Furthermore, it provides the ability to explore
the trade-off between test accuracy (i.e. test error probability)
and test application time (i.e. number of retested circuits) by
varying the area of the guard-banded region.

Guard-banding has been mentioned in [9] as an option for
the MARS-based methods as well. Therein, guard-bands are
defined as a percentile deviation from the circuit specification
limits, but no experimental data is reported regarding the

2Often, instead of the test error probability, the performance parameter
prediction error is reported. However, this error metric is only loosely related
to the actual misclassification rate.
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Fig. 1. Allocation of guard-bands in a two-dimensional measurement space
extracted from the response of the switched-capacitor filter in Fig. 3 to band-
limited white noise.

resulting number of retested circuits. Also, within the context
of specification test compaction [25], guard-bands are allo-
cated by perturbing the entire optimal decision hypersurface
by a predefined distance, thus creating a guard-banded region
of constant width. This rigidity of the reallocation method
might inadvertently guard-band regions with non-overlapping
populations, resulting in an unnecessarily large number of
retested circuits. Instead, in the proposed method, the two
guard-bands are viewed as independent decision boundaries
and, thus, are allocated regardless of the position of the optimal
decision hypersurface.

The rest of this paper is organized as follows. In section
II, we briefly review the ontogenic neural classifier proposed
in [1] and extend it to allocate guard-bands in a given
measurement space. In section III, we discuss the extraction
of an initial discriminative measurement space by applying
a band-limited white noise test stimulus. In section IV, we
present a genetic search method for selecting measurement
subspaces wherein effective guard-bands can be allocated. In
section V, the effectiveness of the proposed methodology is
illustrated on a switched-capacitor ladder filter.

II. GUARD-BAND ALLOCATION

A. The two-class separation problem

The ontogenic neural classifier described in [1] allocates a
hypersurface that separates the projections of the nominal and
faulty instances of a representative set of characterized circuit
instances (training set) in a d-dimensional measurement space.
The key novelty of this classifier is that it possesses the ability
to allocate arbitrarily non-linear hypersurfaces, thus reciprocat-
ing very well even in the presence of complex distributions.
Fig. 1 illustrates an example of a separation hypersurface in a
two-dimensional measurement space x1−x2. The classifier is
constructed progressively (ontogenicity) by placing layers of
linear perceptrons [26] above existing ones. The weights of the

synapses of each added layer are adjusted using the thermal
perceptron learning rule [27]. This construction mechanism
is known as the 1-Pyramid algorithm [28]. The first layer
receives as input the d-dimensional measurement vector, while
successive layers receive as additional inputs the outputs of the
preceding layers and a parabolic term, which is the sum of the
squared d measurements. The hypersurface allocated by the
output perceptron (top layer) is linear to its input vector, but it
is non-linear to the original d-dimensional measurement space
due to the parabolic term and the shared information from
the preceding perceptrons. Thus, non-linear hypersurfaces can
be obtained by training a sequence of linear perceptrons. As
training progresses, the complexity of the hypersurface in-
creases and the classification error in the training set decreases.
However, the generalization of the trained classifier (i.e. its
ability to correctly classify previously unseen circuit instances)
decreases when the separation hypersurface is over-fitted to the
training data. In fact, the generalization reaches a maximum
and, subsequently, decreases monotonically. Therefore, the
generalization is monitored on a second independent set of
circuit instances (validation set) and after training is complete,
the classifier is pruned down to the layer that achieved the best
generalization. An unbiased estimate of the generalization is
then computed on a third independent set of circuit instances
(test set). The interested reader is referred to [1] for more
details and relevant references.

B. Guard-banding

As shown in Fig. 1, there exist regions in the measurement
space wherein nominal and faulty circuit populations overlap.
Due to this overlap, the optimal test hypersurface is bound
to have a non-zero error probability. To date, no extracted
measurement space with zero test error has been reported.
The lowest observed error has been around 2%, which is
deemed prohibitive for accurate production testing. Thus, the
hypersurface-based test cannot substitute the standard func-
tional tests without sacrificing test accuracy. In this section,
we propose a method for reducing the error through the use
of guard-bands.

The underlying idea is to allocate two hypersurfaces (nom-
inal and faulty guard-bands) that surround the overlapping
populations. The guard-bands partition the measurement space
into three regions: two regions of predominantly nominal
or faulty circuits, respectively, and a zone in between that
contains a mixed distribution. Fig. 1 illustrates a possible
allocation of guard-bands, with the grey area representing the
guard-banded zone. A new circuit is now tested by examining
the location of its measurement pattern with respect to the
two guard-bands instead of the single test hypersurface. If its
measurement pattern falls in the predominantly nominal or
predominantly faulty regions, it is assigned to the respective
class with low error probability. Otherwise, if its measurement
falls within the guard-banded zone, the circuit is retested via
standard functional test to ensure a credible decision.

By varying the guard-banded area, the number of retested
circuits and the test error probability can be traded off.
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Specifically, as the guard-bands become more distant from the
original test hypersurface, the test error probability is reduced
at the expense of retesting more circuits. In the two limits,
the guard-bands surround the entire distribution or merge onto
the optimal test hypersurface. Thus, if hr denotes the error of
the test hypersurface, then the test error, gr, associated with
the guard-bands drops from hr to zero as the number of the
retested instances increases. In practice, in a discriminative
measurement space, guard-bands can be allocated such that
the test error approaches zero when a small fraction of circuit
instances is retested.

Each guard-band is allocated separately to classify perfectly
all the training patterns of one class and, under this constrain,
to provide optimum classification for the training patterns of
the opposite class. Without loss of generality, consider the
allocation of the faulty guard-band. First, the overlapping
regions are cleared out of the nominal training patterns. This
is achieved by identifying the nominal patterns that lie within
hyperspheres of radius D centered at faulty patterns. The
radius D is defined as:

D =
1

Nf

∑
i∈Cf

min
j∈Cn

‖ �xi − �xj ‖ (1)

where �xk is the measurement pattern of instance k, Cn and
Cf denote the nominal and faulty classes, respectively, ‖ · ‖ is
the Euclidian norm, and Nf is the number of faulty patterns
in the training set. Nominal patterns j are successively paired
with all faulty patterns i and if the inequality:

‖ �xi − �xj ‖< D (2)

holds, then they are temporarily excluded from the training
set. After the overlapping regions have been resolved, the
ontogenic neural classifier described in [1] is employed to
allocate the faulty guard-band. The dual procedure is followed
to allocate the nominal guard-band.

Evidently, given a measurement space, the aforementioned
trade-off between test time and test error probability can be
explored by simply varying the parameter D around its value
calculated in eq. (1).

III. MEASUREMENT EXTRACTION

The ability of the classifier to allocate effective separation
hypersurfaces and, by extension, guardbands, is bounded by
the choice of the measurement space wherein the problem is
solved. Measurements should provide adequate discrimination
and, preferably, should be extracted by interfacing the circuit
under test (CUT) to a single test configuration, in order to
maintain low test application time. To this end, we use white
noise limited up to a frequency multiple of the bandwidth of
the CUT [20] as a test stimulus in our method. Intuitively, this
stimulus is promising, since it contains infinite tones that can
generate distinct intricate response waveforms.

Band-limited white noise can be digitally synthesized on-
chip using reliable low cost resources, as shown in Fig.
2. The pseudo-random bit sequence generated by a linear

Fig. 2. Pseudo-random white noise source.

feedback shift register (LFSR) has a spectrum whose envelope
is proportional to the square of (sinx)/x [29]. The spectrum
is flat within ±0.1dB up to 12% of the clock frequency fclk

of the LFSR, dropping rapidly beyond its −3dB point of
0.44·fclk. Thus, low-pass filtering with a high frequency cutoff
of 5%− 10% of fclk will convert the LFSR output to a band-
limited white noise voltage. Since a sharp cutoff characteristic
is not required, simple RC filtering suffices. The filtered bit
pattern is applied to the CUT through a driving buffer. The
response of the CUT is sampled3 at d equidistant points.

According to the above discussion, fclk must be chosen such
that 0.1 · fclk ≥ ν · BW , where BW is the bandwidth of the
CUT and ν is a positive integer. Let tr be the time resolution
between consecutive measurements and to be the settling time
of the CUT. In order to avoid repeating measurements, the
length m of the LFSR must be chosen such that its period,
(2m−1) ·Tclk (assuming that the LFSR generates a maximal-
length pseudorandom sequence), satisfies (2m − 1) · Tclk ≥
to + tr · d.

IV. MEASUREMENT SUBSPACE SELECTION

The extraction method of the previous section provides
an initial set of d candidate measurements that may be
used to define the space wherein the classifier will allocate
guard-bands. In order to increase the probability of extract-
ing useful candidate measurements, d should be adequately
high. However, due to a paradoxical phenomenon termed
curse of dimensionality [26], increasing the dimensionality
of the measurement space does not necessarily result in a
better solution to the guard-band allocation problem. Due
to the finite size of the training set, as the dimensionality
increases, the distributions become increasingly sparse, the
overlapping regions gradually disappear and the percentage
of ambivalent circuits that are resolved through functional
retesting diminishes. However, this incurs an adverse effect
on the test error probability. Since the classifier has to assign
a target value to each point in the measurement space, it
ends up assigning random target values to large subspaces

3Direct sampling of the transient response is not suitable for multi-gigahertz
RF devices due to expected timing inaccuracies. Thus, a new measurement
extraction paradigm is required in order to apply machine-learning-based
methodologies for RF devices. The research group at Georgia Institute of
Technology has investigated this problem, which continues to be a topic
of on-going research. Possible solutions include modulation of a baseband
test stimulus and subsequent demodulation of the circuit response [8], power
spectral density features [11] and the use of embedded sensors to extract low-
frequency varying or dc responses [12], [15]. A comprehensive overview of
the above techniques can be found in [14].
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that are empty because of the sparse training distributions.
Therefore, to avoid the curse of dimensionality, guard-bands
should be allocated in a low-dimensional subspace of the
initial d-dimensional measurement space, wherein the ratio of
training instances to the number of coordinates is sufficiently
large.

In order to select appropriate low-dimensional measurement
subspaces, we employ an adapted version of the genetic
algorithm (GA) developed in [30]. Recent comparative studies
[31] show that GAs [32], [33] are the most suitable for
large scale measurement selection problems. GAs start with
a base population of chromosomes and generate successive
populations through an intrinsically parallel search process that
mimics the mechanics of natural selection and genetics [30].
In the search for subsets of measurements, a subset is encoded
in a chromosome as a d-element bit-string, with the k-th bit
denoting the presence or the absence of the k-th measurement.
After each generation, a mating pool is selected to include
copies of the fittest current chromosomes. Successive popula-
tions are reproduced by mating the chromosomes in the pool at
random and allowing them to crossover and mutate. Crossover
proceeds with high probability and is performed by crossing
and separating the chromosome pair at a chosen crossover
site. Mutation is the occasional alteration of a bit position
in the chromosome string in order to reinstate potentially
valuable measurements that have been discarded during the
search. The GA evolves by the juxtaposition of schemata (bit
templates), which results in rapid optimization of the target
fitness function.

As pointed out in section II-B, our method enables explo-
ration of the trade-off between test time and test accuracy by
varying the radius D during guard-band allocation in a given
measurement space. Within this trade-off, various optimization
objectives can be pursued. For example, one may place more
emphasis on test accuracy and, hence, pursue minimization
of the percentage of retested circuits under the constraint that
the test error probability does not exceed a certain threshold.
Alternatively, one may place more emphasis on test time and,
hence, pursue minimization of the test error probability, under
the constraint that the percentage of retested circuits does
not exceed a certain threshold. Mixed objectives may also
be of interest. However, the measurement subspace wherein
guard-banding better meets each of these objectives may
be different. Thus, in order to obtain tight solutions along
the trade-off curve, the GA is run multiple times to select
subspaces that maximize fitness functions which reflect various
competing objectives. The following three fitness functions are
considered:

f1 = hr, nr = 0

f2 =
e( (100−nr)−th

m )
e(1)

· (1 + gθ · υ)

f3 =
e( (100−nr)−th

m )
e(1) · (gr + α)

where hr is the test error of the optimal test hypersurface, gr

is the test error of the guard-bands, nr is the percentage of
retested circuits and e (·) is the exponential function. Fitness
f1 is simply the test error of the ontogenic neural classifier
[1] in the absence of guard-bands (nr = 0). Fitness f2 aims
to identify the lowest nr under the constrain gr < εr, where
εr is an accepted error threshold. The parameter υ is 1 when
gr > εr and 0 otherwise. gθ, where θ = 0.5, is a penalty
factor that is kept low at the beginning of the GA in order to
explore the schemata with larger flexibility, and it increases
as the GA evolves in order to discard the invalid solutions
that satisfy gr > εr. The exponential function scales nr in
order to offer higher fitness to solutions that have low nr.
The parameters th and m, termed feasibility threshold and
tolerance margin respectively, define the scaling operation.
Fitness f3 is unconstrained and attempts to jointly optimize
nr and gr. The parameter in the denominator is a small real
number set to α < 1.

V. RESULTS

The effectiveness of the proposed methodology in exploring
the trade-off between test time (percentage of retested circuits)
and test accuracy (test error probability), as well as in reducing
the test application of standard functional test without sacrific-
ing accuracy, is illustrated on the fifth-order elliptic switched-
capacitor ladder filter shown in Fig. 3.

In a production environment, the training, validation and
test sets would comprise chips across several lots, in order
to capture the statistical impact of process drifts on the
performance parameters. For the purpose of this experiment,
we generate N = 2000 instances by Monte Carlo analysis,
letting various design parameters follow a normal distribu-
tion centered at their nominal values with 3% variance. The
parameters considered are the switched-capacitor values and
the geometry, oxide thickness, threshold voltage, body effect
coefficient and junction capacitances of the transistors in the
op-amps. Catastrophic shorts and opens in the MOS switches
are easily detected since they generate outlier points in the
faulty distribution. N/2 instances are assigned to the training
set and N/4 to each of the validation and test sets. The
standard functional tests performed to characterize the N
instances concern the ripples in the pass- and stop-bands,
gain errors, group delay, phase response and total harmonic
distortion.

The pass-band of the filter is in the range 0 − 1KHz. The
band-limited white noise stimulus is generated by a maximal
length LFSR with characteristic polynomial x10 + x7 + 1,
clocked at fclk = 100KHz, thus having a period of 10.23ms.
d = 30 measurements are extracted with a conservative
resolution tr = 0.3ms (the settling time is approximately
0.5ms).

The percentage of retested circuits, nr, and the test error
probability, gr, in f2 and f3 are computed using the radius
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Fig. 3. LDI ladder realization of a fifth-order elliptic switched-capacitor filter
[34].

D defined in eq. (1). The threshold value εr in f2 is set
to 1, i.e. only solutions with gr < 1 are considered valid.
The real parameter α in f3 is set to 0.05, i.e. solutions with
very low test error probability are given a very high fitness.
The CPU elapsed times4 and the fittest identified measurement
subsets for f1, f2, and f3 are shown in Table I. Each bit in the
strings corresponds to one of the d consecutive measurements
performed after the response has settled.

For each fittest subspace, several guard-bands are allocated
by varying the radius D5. The corresponding trade-off curves
between test time and test accuracy are illustrated in Fig. 4.
Note that gr = 0 is a reference point that equals the error
probability of standard functional tests, that is, when gr =
0, functional and machine-learning-based tests are equally
accurate. The thick line runs along the dominant identified
(nr, gr) points. These points are dominant in the sense that,
for a specific nr, they correspond to an optimal gr and vice
versa. Four interesting guard-bands can be observed along the
dominant trade-off curve: the test error is 4% when nr = 0,

4The GA and the allocation of guardbands in the fittest identified measure-
ment subspaces are routines that are executed off-line and only once for any
particular design or production run.

5The classifier is unbiased, i.e. gr > 0 corresponds to both test escapes
and yield loss. If test escape elimination is of higher importance, the faulty
guard-band is allocated using a large radius D, such that it is adequately
distanced from all faulty training patterns. Under this scenario, a trade-off
can be obtained by varying the position of only the nominal guard-band.

TABLE I

CPU TIMES FOR THE GA AND FITTEST MEASUREMENT SUBSETS.

fitness function CPU time fittest measurement subset

f1 5.78h 100111010000000001010000001000

f2 10.28h 110010000100011110001000111000

f3 9.97h 100000010011110110100000011000

Fig. 4. Trade-off between test time and test accuracy for the fittest
measurement subspaces identified by running the GA with the three different
fitness criteria defined in section IV. The thick piece-wise linear curve runs
along the dominant points.

it decreases down to 2.0% when 8.1% of the circuits are
retested, it drops further to 0.6% when the percentage of
retested circuits increases to 15.6% and it reaches zero when
this percentage is further increased to 20.7%.

With regards to test application time, let T and T
′

denote
the time for standard functional and guard-band-based test
application per CUT, respectively. The average guard-band-
based test application time is E

[
T

′
]

= t + nr · T , where t

denotes the test application time for a circuit whose measure-
ment pattern falls outside the guard-banded region. Thus, the
average test time difference is T −E

[
T

′
]

= (1 − nr) ·T − t,

which is positive when T > t/ (1 − nr). Given that in this
experiment t < 10ms and that the standard functional test
application time for the filter is typically well above 0.4s,
i.e. T > 0.4s, a pessimistic estimate of the average test time
using the guard-bands corresponding to the point (20.7%, 0%)
is E

[
T

′
]

= 92.8ms. This corresponds to an approximate 4X

relative reduction in test time or, equivalently, a 0.3s average
absolute reduction per CUT.

VI. CONCLUSIONS

The use of guard-bands in machine-learning-based testing
of mixed-signal circuits enables exploration of the trade-off
between test time and test accuracy. As demonstrated in this
paper, efficient allocation of guard-bands in carefully selected
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measurement subspaces allows the majority of circuits to be
tested through faster yet equivalently accurate test criteria as
standard functional tests. Additionally, it pinpoints the circuits
that are suspect to misclassification through the machine-
learning-based test method and should be retested via standard
functional testing, in order to ensure the credibility of the test
decision. Results obtained on a switch-capacitor ladder filter
show that, by retesting 20.7% of the circuits, the accuracy of
standard functional test is maintained while an estimated 4X
relative or 0.3s absolute reduction in test time per CUT is
achieved.
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