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Abstract

Unlike the top-down photolithographic CMOS VLSI pro-
cess, cost-effective bulk fabrication of nanodevices calls for
a bottom-up approach, generally called self-assembly. Self-
assembly, however, inherently lends itself to innate dispari-
ties in the structure of nominally identical nanodevices and,
consequently, wide inter-device variance in their functionality.
As a result, nanodevice characterization and testing calls for
a slow and tedious procedure involving a large number of
measurements. In this work, we discuss a statistical approach
which learns measurement correlations from a small set of fully
characterized nanodevices and utilizes the extracted knowledge
to simplify the process for the rest of the nanodevices. More
specifically, we employ various machine-learning methods
which rely on a small subset of measurements to i) predict the
performances of a fabricated nanodevice, ii) decide whether
a nanodevice passes or fails a given set of specifications,
and iii) bin a nanodevice with regards to several sets of
increasingly strict specifications. The proposed methods are
demonstrated and their effectiveness is assessed, within the
context of nanowire-based chemical sensing, using a set of
fabricated and fully characterized nanowires.

1. Introduction

Nanotechnology promises a broad range of new capabilities
and a revolution in the way that atom or molecule-scale science
and engineering will impact various aspects of our lives. These
promises have sparked tremendous research interest in this
area, with the majority of efforts directed in the physical
domain of developing and characterizing a single or a handful
of nanodevices. Yet, proliferation of nanoscale systems capable
of performing computationally interesting tasks will eventually
require general, robust, and well-understood structural and
behavioral models of these devices. A key challenge in this
quest stems from the uncertainty and randomness associated
with the batch fabrication of nanodevices. Indeed, with feature
dimensions between a fraction of a nanometer and a few
nanometers, nanodevice fabrication and placement is to date
not controllable to the precision we are accustomed to in a
CMOS VLSI process. Unlike the top-down photolithographic

approach, cost-effective bulk fabrication of nanodevices calls
for a bottom-up approach, generally called self-assembly. The
latter, however, inherently lends itself to innate disparities in the
structure of nominally identical nanodevices and, consequently,
wide inter-device variance in their functionality. Thus, each
nanodevice has to be individually characterized through a
laborious process that involves a large number of measurements
and performance computations.

In this paper, we aim to expedite and simplify the process
of nanodevice characterization through the use of statistical
analysis. Specifically, we exploit the ability of machine learn-
ing methods to examine a representative set of characterized
nanodevices and identify correlations between the various
measurements that are typically used for such characterization.
Assuming that the nanofabrication process yields nanodevices
whose performances belong to a distribution, the extracted
knowledge can then be leveraged to reduce the number of
required measurements and, thus, simplify the characterization
procedure for the rest of the nanodevices.

The effectiveness of the various statistical methods em-
ployed in this study is assessed on a set of nanowires that have
been fabricated and fully characterized within the context of
a nanowire-based chemical sensing application. The objective
of this application is to use nanowires that are functionalized
as chemical sensors, in order to distinguish among different
trigger elements. Such chemical sensing results in a shifting
of the I-V curve of the nanowire, the magnitude of which
depends on the sensed element. Interestingly, both the baseline
I-V curve and the shifted versions in the presence of a target
chemical vary widely even for nominally identical functional-
ized nanowires. Therefore, each fabricated nanowire has to be
characterized with respect to a given set of specifications that
it needs to comply to, in order to achieve the aforementioned
objective. To simplify this process, the statistical methods
proposed herein focus on the following three tasks:

• Performance Estimation: We examine the effectiveness
of using regression models to predict the performances
of a nanowire from a small subset of the measurements
that are typically obtained for characterization. As we
demonstrate experimentally, the average prediction error
is very small and remains within a small zone around the
actual performance value, while the number of required
measurements is drastically reduced.
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• Pass/fail Testing: We examine the effectiveness of using
the predicted performances to decide whether a nanowire
passes or fails a given set of specifications. We also
examine the effectiveness of various classifiers, including
a Support Vector Machine (SVM) [1] and an Ontogenic
Artificial Neural Network (ONN) [2], to directly predict
the pass/fail label of a nanowire. As we demonstrate
experimentally, classification accuracy of over 90% can
be achieved with a very small subset of measurements.
Moreover, a guardbanding method can further boost this
accuracy at the expense of obtaining the complete set of
measurements on a small fraction of the devices.

• Binning: We examine the effectiveness of using the
predicted performances to bin a nanowire with regards
to four sets of increasingly strict specifications. We also
examine the effectiveness of a multi-class classifier to
achieve the same. As we demonstrate experimentally,
binning accuracy of over 80% and an average incorrect
binning distance of 1.2 can be achieved with a very small
subset of measurements.

The rest of the paper is organized as follows. In section
2, we provide an overview of the process through which
the nanowires employed in this study are fabricated and
functionalized. In section 3, we describe the target chemical
sensing application and we review the specifications that the
performances of the fabricated nanowires should satisfy, as
well as the process through which these performances are
currently computed. Then, in section 4, we assess the effec-
tiveness of the proposed statistical methods in predicting these
performances from a small number of measurements, as well
as the effectiveness of using the predicted performances for
testing and binning the nanowires. We should note that the
proposed statistical methods are motivated by and resemble
the specification test compaction and alternate test methods
that have become popular in analog/RF circuits [3], [4], [5].

2. Nanowires as FETs and Sensors

We start by reviewing the general procedure through which
the nanowires employed in this study are fabricated, integrated,
and characterized to date. We also briefly discuss the ability
of these nanowires to be functionalized and act as chemical
receptors in order to support the targeted sensing application.

2.1. Fabrication

The electronic and optoelectronic properties of semiconduct-
ing inorganic nanowires is the subject of intense contemporary
interest. Semiconducting crystals grown by highly anisotropic,
unidirectional methods have been known since the pioneering
works of Wagner et. al [6] and Hiruma et. al [7], and are a sub-
ject of concentrated research [8], [9], [10], [11], [12] because
they represent the limit of semiconductor crystalline solids.
These structures, termed nanowires (NWs), are typically single-
crystal, solid cylindrical structures nanometers in diameter and

Fig. 1. TEMs of GaN nanowires grown in Reed’s lab-
oratory: (a) The top illustrates the nucleating catalyst
at the end of the nanowire. The inset shows a cluster
of NWs on the growth substrate at lower magnification
(the ball in the center is a Ga pelllet). (b) The bottom
illustrates that the nanowires are grown in the 112̄0
direction and are single-crystal hexagonal wurtzite.

microns in length and can be synthesized from a vast array of
traditional semiconducting materials (such as Si, GaN, ZnO,
and others). Over the last few years a wide variety of devices
have been demonstrated, such as diodes, FETs (and circuits),
LEDs, chemical and biological detectors, and even quantum
effect devices such as resonant tunneling diodes. Along with
carbon nanotubes, these structures are considered potential
candidates for post-CMOS electronic devices.

However, a number of limitations must be overcome before
these nanowires can be implemented in real applications. Typ-
ically, these structures (both nanowires and carbon nanotubes)
are synthesized by a bottom-up approach utilizing a catalyst in
a growth system such as an oven. An example of this process is
shown in Fig. 1. They are then transferred onto planar systems,
where they are ultimately integrated with electronic fanouts.
Thus, the integration challenge is severe, as the nanowires
must be laboriously manipulated and serially fabricated. Labor
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Fig. 2. Optical micrograph of dies used for nanowire
device fabrication (top). Probe tips are visible touching
the contact pads. A representative magnified device is
shown in the SEM (bottom), in this case illustrating a
multipoint device to characterize contact resistance.

intensive custom lithography is often used since there exist
no suitable high-throughput NW-to-individually-addressable-
interconnect alignment techniques. Consequently, this serial
method is impractical for obtaining useful integration.

A more practical method is the use of a parallel technique
such as optical lithography to define these devices. To this end,
Reed’s Group at Yale University has recently developed a high
throughput capability to make and study a large number of
devices, which is crucial to understanding nanowire material
and device properties enough to successfully integrate into
circuits. This method, the details of which can be found in
[13], was the first to report a statistically significant sample
size of nanowires, sufficient for extracting correlations with
material synthesis and device fabrication parameters, or for
quantifying interdevice behavioral fluctuations. The developed
process combines controlled dispersion of nanowires with
appropriate metallization to yield dies with individually ad-
dressable nanowire FETs. Specifically, the dispersed nanowires
form contacts between adjacent pairs of metal lines, which can
then be successively probed to identify whether a nanowire
has, indeed, established contact. In this case, the metal access
points can be used to examine the transfer characteristics of
the nanowire and decide whether it is a functional device. With
150 dies per 4” wafer, a large number of nanowire devices per
wafer can be created. As an example, Fig. 2 shows a nanowire
establishing contact among several adjacent metal lines.

Fig. 3. Channel resistance (and a comparison of 2-
point versus 4-point) for various devices fabricated
from nominally identical nanowires.

With the integration issue for accessing and characterizing
individual nanowires minimized, another limiting problem of
nanowire devices now becomes obvious. Characterization of a
full wafer containing about 50 devices that are 4-pt or greater
(i.e. they establish contact between at least 4 consecutive metal
lines) yields Fig. 3. This bar-chart illustrates a major problem
with nanodevices, namely pronounced inter-device fluctuations.
The multi-point measurements reveal an important insight - the
contact and device variables fluctuate little, leaving intrinsic
material properties as the main source of fluctuation. The
resistivity measurements shown are equally reflected in the
mobility and carrier density measurements, as well as the
resulting transconductances and circuit performance.

These measurements illustrate the inter-device fluctuations
inherent in nanoscale material synthesis, which will certainly
inhibit system-level integration. And as device dimensions
scale, both material properties and device fabrication variations
will give rise to even more pronounced innate device-level
fluctuations. It is, therefore, foreseeable that extensive device
characterization and individual tuning of nanoscale systems
will be required. In this sense, methods for reducing the burden
of nanodevice characterization and testing are expected to play
a key role in widespread deployment of nanoscale systems.

2.2. Functionalization

It has been known for some time that one can potentially
achieve unprecedented sensitivity in ChemFET-like sensors by
utilizing quasi-1D channels, since the “bulk” channel con-
ductivity is essentially modulated by the surface chemistry
of the device. Semiconducting nanowires have been shown
to be chemical sensors of excellent sensitivity. The top of
Fig. 4 shows a schematic of this type of sensors in an FET
configuration. Note that the chemical potential and carrier
density of the wire is set by the gate that lies under the
nanowire, to maximize the available surface (although Reed’s
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Fig. 4. Schematic of a nanowire chemical/biological
sensor in an FET configuration (drawing courtesy of
M. Moskovits) (top). Response of n-type In2O3 semi-
conducting nanowire (from [14]) (bottom).

lab has also demonstrated identical FET performance by a
top gate). The bottom curve shows the response of suitably
functionalized nanowires (n-type semiconductor (In2O3)) to
the effector PSA (Prostate Specific Antigen), demonstrating
selective response of the nanowires’ conductivity (note the
control BSA (Bovin Serum Albumin) is similar to PSA, but
shows no response).

3. Target Application: Chemical Sensing

The end application for the nanowires employed in this
study is the ability to sense and distinguish between different
chemicals. In other words, the objective is to be able to
functionalize a nanowire such that it reacts distinctly with
different trigger elements. As shown in Fig. 5, the nanowire
is essentially configured as a three terminal FET device. For
a given bias voltage between its gate and source, VG, when
the nanowire senses a trigger chemical, the ISD-VSD curve
between the source and the drain of the FET is shifted, as
implied by the bottom curve of Fig. 4. Assuming that this
shift is different for each targeted chemical, one may use
the ISD-VSD curve to identify the absorbate. While selective
nanowire functionalization for different trigger elements has yet
to be done, it has been shown that different chemicals indeed
result in different shifts in this curve. Furthermore, it has been
shown that the impact of such chemical sensing is equivalent to
varying VG. In other words, the ISD-VSD curve shift instilled

Fig. 5. Nanowire configured as three-terminal FET.

Fig. 6. ISD-VSD plot for varied VG. Each curve em-
ulates the nanowire response in the presence of a
different chemical.

by a chemical trigger can be mimicked by changing the bias
voltage between the gate and source of the nanowire FET.
Therefore, by stepping VG through 17 distinct voltage values
and plotting the corresponding 17 ISD-VSD curves, we can
emulate the response of the nanowire in the absence of a
trigger and in the presence of each of 16 targeted chemicals.
An example of such measurements is shown in Fig. 6, where
VG is varied from -40V to 40V at a step of 5V. For the purpose
of not cluttering the figure, only 9 of the 17 plots (at a step of
10V) are shown.

3.1. Nanowire Characterization

Essentially, each of these ISD-VSD curves corresponds to
the response of a nanowire when it senses a target chemical.
However, for a nanowire to be effective as a chemical sensor,
these responses need to exhibit performances that abide by
certain specifications. In order to characterize each nanowire,
a tedious process involving a large number of measurements
is currently employed. Specifically, for each of the 17 VG

values, the voltage VSD between the source and the drain of
the three-terminal nanowire FET is swept between -1V and
1V and 41 measurements of the current ISD are taken to
plot the corresponding ISD-VSD curve. In total, 697 current
measurements are performed on each device. Then a least-
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squares slope value fit to each curve and the correlation of
the actual measurements to this slope are computed. From
these 34 slopes and correlations (hereafter referred to as the
‘measurements’), the following 5 performances are computed:

1) Min-slope: The smallest fitted slope.
2) Max-slope: The largest fitted slope.
3) Span: The difference between the Min-slope and

Max-slope.
4) Linearity: The smallest correlation value of the fitted

slopes.
5) Distribution: A measure of how evenly distributed

the slope values are throughout the span. The distribution
value is computed by first normalizing each of the 17
slopes to the span, i.e. expressing them as percentages
of the span such that the Min-slope value is at 0%
and the Max-slope value is at 100%. Then, a least-
squares slope value fit is applied to these normalized
slopes and its correlation value is calculated and reported
as the distribution.

These performances are subsequently compared to 6
specifications to decide whether the nanowire can be
used effectively in the target application (note that Span
has a double-sided specification while the rest of the
performances have single-sided specifications): Span-low,
Span-high, Min-slope-low, Max-slope-high,
Linearity-low, and Distribution-low.

4. Statistical Characterization & Testing

While the aforementioned process yields the nanowire
performances and can be used for characterization, pass/fail
testing, and binning of a nanowire, it is slow and tedious due
to the large number of measurements involved. To alleviate
this problem, we employ statistical methods that rely on a
small subset of the 34 measurements (and, by extension, the
697 current measurements) to predict the performances, to
test, and to bin each nanowire. We point out that, as the
functionality of nanowires becomes more elaborate and as their
complexity increases, the number of measurements needed for
characterization will also increase. Thus, statistical approaches,
such as the ones described herein, can prove particularly handy.

4.1. Experimental Setup

The described methods are assessed on a set of 842
nanowires that were fabricated and fully characterized in
Reed’s laboratory through the process described in section 3.1.
The nanowires are split uniformly at random into three sets.
The first set is called the training set and consists of half of
the devices. This set is used for building the statistical models
for regression and classification. The second set is called the
hold-out set and consists of one quarter of the devices. This
set is used as an independent set during the selection of
measurements subsets (feature selection). The third set is called
the validation set and consists of the remaining one quarter

of the devices. This set is used as a final independent set on
which the statistical model built from the selected subset of
measurements is assessed.

4.2. Performance Prediction

We first focus on the task of predicting the 5 performances
of a nanowire using only a subset of the 34 measurements.
For this purpose, we employ regression using MARS [15].
More specifically, we use these 34 measurements from the
nanowires in the training set to build regression models for
each of the 5 performances. These models are then applied to
predict the performances of the devices in the validation set and
to compare them to the actual performances in order to compute
the prediction error. The latter varies greatly depending on the
cardinality of the subset of measurements that is used to build
the regression models, as well as the actual measurements that
this subset includes. Naturally, our objective is to minimize
the error, but also to keep the cardinality of the required
measurement subset as low as possible to expedite the nanowire
characterization process.

For this purpose, we employ a simple greedy algorithm
to search in the powerset of measurements for appropriate
subsets. Starting with all 34 measurements, the algorithm
builds regression models and assesses them on the hold out
set to compute the prediction error. Then, each of the 34
measurements is excluded, in turn, and 34 regression models,
each with 33 measurements, are built and assessed on the hold
out set. Then, the measurement whose exclusion results in the
least increase in prediction error is permanently eliminated and
the process is repeated until only one measurement is left. In
the end, the algorithm reports the prediction error achieved on
the hold-out set by each of the subsets of cardinality 1 through
34. Thus, given a targeted minimum acceptable prediction
error, the subset of minimal cardinality that achieves this target
on the hold-out set is selected. Finally, the regression models
that are built in the training set using the selected measurement
subset are applied to predict the performances of the nanowires
in the validation set and the average prediction error is reported
as the figure of merit.

In our study, we set the threshold for the acceptable error
between an actual performance and its prediction to 3σ, where
σ is the standard deviation of this performance over all the
characterized nanowires. In other words, we pick the minimal
cardinality subset of measurements that yields predictions of
error smaller than ±3σ in the hold-out set. The cardinality
of this set is 4 and the results of applying the corresponding
regression models to the validation set are shown in Fig. 7,
where we plot the actual vs. the predicted value for each of
the 5 performances for all the nanowires in the validation set.
In each of the 5 plots, the middle line represents the ideal
case of zero prediction error, while the upper and lower lines
represent the ±3σ zone. As can be seen, for the vast majority
of the devices in the validation set, the prediction error remains
well within the ±3σ zone for all 5 performances, despite the
fact that only 4 out of the 34 measurements are used.
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Fig. 7. Actual vs. predicted performances. Regression
error remains for most devices within a ±3σ band.

Fig. 8. Comparison of pass/fail prediction methods.

4.3. Pass/Fail Testing

The next task that we focus on is predicting whether
the performances of a nanowire pass or fail a given set of
specifications, as described in section 3.1. The simplest way
of achieving this is to compare the predicted performances
that are calculated from the MARS models to the given
specifications. We refer to this two-step approach, which first
learns the mapping of measurements to performances and then
uses this mapping to decide on a pass/fail label, as “classifi-
cation through regression”. Once again, a greedy algorithm is
employed to report the subset of measurements of cardinality
1 through 34 that yields the minimal misclassification error for
the nanowires of the hold-out set. These measurement subsets
are subsequently applied to the nanowires of the validation
set and the MARS Perf. plot of Fig. 8 is derived. As may be
observed, this method performs respectably, as it achieves over
85% classification accuracy with only 3 measurements.

Alternatively, one may also attempt to learn directly the
mapping between the measurements and the pass/fail label. In
our study, we employ three such direct classification methods; a
binary regression, a support vector machine (SVM) [1], and an
ontogenic artificial neural network (ONN)[2]. The first method
still relies on MARS models, only this time the range of these
functions is {0,1}, signifying failing or passing nanowires,
respectively. Predicted values under 0.5 are rounded down
to 0, while predicted values over 0.5 are rounded up to 1,
which causes MARS to act like a classifier. Combining the
greedy selection algorithm with this classifier yields the results
shown in the MARS P/F plot of Fig. 8. In the second and
third methods, the SVM and the ONN attempt to learn the
boundary that separates the passing from the failing nanowire
populations in the hyper-dimensional space of the available
measurements. Hence, they directly classify a nanowire as
passing or failing by simply comparing the footprint of its
measurement pattern on the hyper-dimensional space to the
location of the separation boundary. The SVM employs an
internal feature selection algorithm which relies on Principal
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Fig. 9. Trade-off between misprediction error, number of retested nanowires, and number of measurements.

Component Analysis (PCA) to identify the most relevant
measurements. Hence, combining it with greedy measurement
selection incurs a minimal impact on its effectiveness, as shown
in the SVM plot of Fig. 8. In contrast, the ONN is paired with a
multi-objective Genetic Algorithm (GA) [16], which searches
in the powerset of measurements. In the ONN plot of Fig. 81,
we report the minimum misclassification error observed for a
given subset cardinality.

The results show that all three methods perform simi-
larly, with the MARS-P/F and the SVM achieving just under
90% classification accuracy with 2-3 measurements. With 5
measurements, the SVM performs at accuracy levels of over
90%. For this experiment, the ONN performs slightly worse,
with 3 measurements garnering just below 89% accuracy,
while with 10 measurements, it reaches an accuracy level of
almost 90%. One more noticeable point is that all three direct
classification methods outperform the classification through
regression approach. This is expected, since the latter tunes
the learned mappings to minimize the average performance
prediction error, which does not necessarily lead to the optimal
mappings for minimizing the pass/fail classification error.

While the pass/fail prediction accuracy using a very small
number of measurements exceeds 90%, it may still be inade-
quate for the target application. In this case, a guardbanding
methodology may be employed to identify the nanowires for
which the pass/fail decision is prone to error. These nanowires
can then be examined through a second test stage, where
all the measurements used for nanowire characterization are

1We note that the GA employed for feature selection quickly figures out
that the classification accuracy does not improve by using large measurement
sets. Hence, it steers away from large sets and, therefore, data is only available
for cardinality 2 to 24, skipping 23.

obtained, so that the nanowire can be definitively tested. By
varying the width of the guarbands, we can add a third
dimension in the trade-off exploration, namely the number of
retested nanowires, along with the prediction error and the
number of measurements. In this study, we use a guardbanding
methodology that has been previously developed in conjunction
with the ONN [4]. The results are demonstrated in the 3-D plot
of Fig. 9. One can see, for example, that the genetic algorithm
identifies a set of 5 measurements which, when used to train
the ONN with the guardbands, result in an misprediction error
of 2.84% by retesting 26.07% of the nanowires.

4.4. Binning

In addition to performance prediction and pass/fail testing,
one may also wish to bin the nanowires in relation to increasing
levels of strictness in the specifications. To that end, we first
assume four different sets of specifications, each one stricter
than the last. Then, we define the bins from one to five where
nanowires in the first bin can pass the strictest specification
set, nanowires in the second bin can pass all but the strictest
specification set, and so on until the fifth bin contains nanowires
that categorically fail. At this point, statistical methods can be
used to predict into which bin a device will fall. Herein, we
perform statistical binning in two ways. As a first option, we
utilize the predicted performances from our previous regression
experiment along with the four sets of specifications in order to
assign each nanowire to a bin. As a second option, we employ
the aforementioned ontogenic neural network, configured as a
multi-class classifier, to attempt prediction of the bins directly.

A comparison between the results obtained from the neural
network and those obtained by calculating from the predicted
performances is provided in Fig. 10. As can be seen, the bins
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calculated from the predicted performances yield only about
75% accuracy even when using as many as 19 out of the 34
measurements. Additionally, in cases where the predicted bin is
incorrect, it is on average over two bins away from the correct
case (2.67 bins on average for the 19-measurement case). In
contrast, the multi-class ontogenic neural network is able to
perform at over 80% accuracy with only three measurements.
Furthermore, of the misclassified devices, most are classified
only one bin away from the correct case (1.261 bins on average
in the 3-measurement case). These results corroborate the
observation made in the previous section regarding the impact
of the additional step required in classifying through regression.

5. Conclusion

As we reach the point where nanodevices can be fabri-
cated and integrated in bulk, a pressing need to expand the
nanotechnology research agenda is surfacing. Indeed, the leap
from understanding nanowires at the device level to creat-
ing nanoscale architectures and functional nanoscale systems
hinges upon the ability to effectively model, characterize and
test nanodevices. Given the observed innate fluctuation in the
structure and functionality of nanodevices, these tasks require a
tedious and laborious effort. Towards alleviating this problem,
we have demonstrated that statistical methods can effectively
simplify this process. Specifically, we have shown the ability
of machine learning methods to accurately predict nanodevice
performances, classify nanodevices as good or bad, and bin
nanodevices with respect to distinct sets of specifications.
Furthermore, we have concluded that all of the above may be
achieved with a drastically smaller set of measurements than
what is currently employed. Our conjectures have been cor-
roborated experimentally using data from fabricated nanowires,
boosting our confidence that these results will translate to an
equivalent decrease in characterization and test time and will
help push nanotechnology research to the next level.
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