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Abstract—We present a method for selective hardening of con-
trol state elements against soft errors in modern microprocessors.
In order to effectively allocate resources, our method seeks to
rank the control state elements based on their susceptibility,
taking into account the high degree of architectural masking
inherent in modern microprocessors. The novelty of our method
lies in the way this ranking is computed. Unlike methods that
compute the architectural vulnerability of registers based on
high-level simulations on performance models, our method oper-
ates at the Register Transfer (RT-) Level and is, therefore, more
accurate. In contrast to previous RT-Level methods, however, it
does not rely on extensive transient fault injection campaigns and
lengthy executions of workloads to completion, which may make
such analysis prohibitive. Instead, it monitors the behavior of key
global microprocessor signals in response to a progressive stuck-
at fault injection method during partial workload execution.
Experimentation with the Scheduler module of an Alpha-like
microprocessor corroborates that our method generates a near-
optimal ranking, yet is several orders of magnitude faster.

I. INTRODUCTION

The increasing threat of soft errors in nanometer tech-

nologies has resulted in a plethora of design solutions for

protecting latches from Single Event Upsets (SEUs) [1], [2],

as well as combinational logic from Single Event Transients

(SETs) [3], [4]. Despite the demonstrated effectiveness of

these solutions, applying them blindly across an entire design

incurs prohibitive cost. As a result, various methods for

assessing the susceptibility of individual latches or logic gates

have also been proposed [5], [6], in order to support partial

hardening approaches [7], [8], [9], [10], [11]. Susceptibility

evaluation and the corresponding ranking of latches or logic

gates typically takes into account a number of factors, includ-

ing electrical device characteristics, timing issues, as well the

actual logic function implemented. These factors reflect the

circuit-level and gate-level reasons that may prevent an SEU

or an SET from causing a soft error in a circuit. However, they

are unable to capture error masking causes at higher levels

and, therefore, they prove rather insufficient when applied to

modern microprocessors.

Modern microprocessors exhibit a high degree of

architectural-level and application-level masking, resulting in

many errors being suppressed or having a low probability of

affecting the workloads that are typically executed. Indeed,

the multitude of functional units and stages in the deeply-

pipelined superscalar microprocessors, along with advanced

architectural features such as dynamic scheduling and

speculative execution, imply that rather complex conditions

need to be satisfied in order for an error in the control logic

to affect the architectural state of the microprocessor or the

outcome of an application. In an effort to capture these

additional masking factors, vulnerability analysis methods

have been developed specifically for microprocessors [12],

[13], [14], [15]. These methods typically employ simulation

of actual workload using an architectural performance model

or an RT-Level model of the microprocessor and aim to assess

the probability that a transient error in a state element will

affect workload execution. As we discuss in the next section,

however, the use of performance models limits the accuracy

of the vulnerability analysis, while the use of RT-Level

models requires prohibitive simulation time.

In this paper, we propose a new method for ranking control

state elements in modern microprocessors, which maintains the

accuracy of RT-Level simulations yet requires several orders

of magnitude less simulation time. The proposed method

leverages a strong correlation between discrepancies in global

microprocessor signals and the probability that an error will

affect program execution, in order to provide an accurate

ranking of the state elements. The remainder of the paper

is structured as follows. Ranking of state elements based on

previous vulnerability analysis methods is discussed in Section

II. Ranking based on the proposed global signal monitor-

ing method is presented in Section III. The infrastructure

employed to perform a comparative evaluation of the two

alternatives is described in Section IV and the results are

presented in Section V.

II. RANKING BASED ON ARCHITECTURAL

VULNERABILITY FACTOR (AVF)

The notion of Architectural Vulnerability Factor (AVF) has

been extensively used in the past to rank state elements based

on their criticality to program execution correctness. AVF

expresses the probability of a bit-flip resulting in a visible

system error. Previously proposed methods for performing

AVF analysis employ either performance models [12] or RT-

Level models [13], [14], [15] of a microprocessor. As we

explain below, the former enable fast AVF estimation but suffer

in terms of accuracy, while the latter offer far more accurate

results but require prohibitive simulation times.
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The performance model-based method described in [12]

introduces the concept of Architecturally Correct Execution

(ACE) and defines ACE bits as those that can cause corruption

in the final output of the program. In contrast, un-ACE bits are

those which under no conditions may produce a discrepancy

in the final program outcome (i.e. branch predictor bits). ACE

analysis is performed and evaluated on an IA-64 performance

simulator, using which the authors can generate deterministic

AVF estimates for the ACE bits and rank the corresponding

state elements based on their criticality. For this purpose,

workloads are simulated to completion and the impact of

faults in these state elements is analyzed in a single simulator

pass, which is performed rapidly. The major drawback of

ACE analysis and AVF estimation using the architectural

performance model, however, is the lack of detail about the

actual hardware structures of the microprocessor. Therefore,

the analysis is only performed for the modeled components,

which in the case of [12] includes components that affect the

performance of a microprocessor. This results in significant

loss of accuracy in AVF estimation. Furthermore, extensive

manual effort is required to identify the conditions that classify

a bit as ACE or un-ACE.

The methods described in [13], [14], [15] resolve the AVF

estimation accuracy problem by performing statistical fault

injection in the RT-Level model, which reflects the actual

hardware structures of the microprocessor. This accuracy,

however, comes at a cost: RT-Level simulations are far slower

than performance models and fault simulation tools are not

readily available at this level. Furthermore, a rigorous transient

fault injection campaign requires excessive simulation times

in order to provide statistically significant results, especially

since AVF computation requires that the workload is executed

to completion. In [13], the authors provide a qualitative

comparison of the AVF estimation accuracy of their extensive

RT-Level simulations to the ACE analysis presented in [12].

Their findings conclude that ACE analysis overestimates soft

error vulnerability by about 3.5x and that this discrepancy

stems from the model’s lack of hardware detail and the single-

pass simulation methodology.

III. RANKING BASED ON GLOBAL SIGNAL

VULNERABILITY (GSV)

In order to generate an accurate control state element rank-

ing without extensive simulations, we present an alternative

method based on monitoring of global microprocessor signals.

Specifically, instead of estimating the probability that transient

errors in a state element will affect the outcome of a program,

we assess the vulnerability of global microprocessor signals

to stuck-at faults in these state elements. The underlying

conjecture is that there exists a strong correlation between

these two metrics. For example, it is expected that an error that

causes a discrepancy in a memory access signal will eventually

lead to an incorrect program execution outcome. Admittedly,

there are cases where such discrepancies will be masked by

the application itself, hence the Global Signal Vulnerability

(GSV) may not exactly reflect the AVF. Nevertheless, since

the proposed method observes global signals, such application-

level masking of discrepancies on these signals is minimal, as

we experimentally corroborate in Section V. Similar to [13],

in order to obtain an accurate ranking of the control state

elements, we estimate GSV on an RT-Level model of the

microprocessor. However, unlike [13] which simulates each

possible transient error (or a sample thereof) in a state element,

our method only requires one simulation for each stuck-at fault

in this state element. As a result, the simulation time required

to rank the state elements based on their GSV is several orders

of magnitude faster.

A simplified flow diagram of our method is presented in

Fig. 1. First, the list of key global signals as well as the

list of state elements to be injected are parsed. Examples of

key global signals include TLB misses, stalls or register file

access signals. For every state element in the list, two mi-

croprocessor model replicas are warmed-up for some number

of instructions. Afterwards, a stuck-at fault in the specified

state element is injected in one of the two models while

they execute in parallel. In every clock cycle, the specified

global signals are checked for discrepancies. As long as no

discrepancies are identified, the simulation proceeds until the

clock cycle limit. If a discrepancy is identified, the signal

name is stored, the faulty model is reset by transferring

the correct state from the golden machine and simulation

resumes. In this way, several discrepancies in global signals

may be identified in a single fault simulation pass. The GSV
of a state element is defined based on the number of such
discrepancies. The higher the GSV of a state element, the more

vulnerable the microprocessor is to transient errors in this state

element and, by extension, the higher the probability of an

incorrect program outcome. Ranking of control state elements

is, subsequently, performed based on their GSV.

Evidently, as compared to the AVF-based ranking of [13],

some accuracy loss is expected due to the following reasons:

1) Discrepancies identified at global signals may be masked

by the application.

2) GSV may reflect discrepancies that only occur if a state

element is stuck-at a value for a multi-cycle period, but

would not occur due to a single-cycle transient error.

3) The period between the time of fault injection and the

time of discrepancy appearance may underestimate the

number of transient errors that would affect the applica-

tion. For example, if a fault is injected at time t = 0 and

a discrepancy at a global signal appears at time t = 100,

any number between 1 and 100 transient errors could

potentially result in an incorrect application outcome.

The major advantage of the described method, however, is

that ranking is performed using a single simulation pass for

each control state element, far less than the sample of 10,000

injections per state element performed in [13]. Furthermore,

simulations are not executed to workload completion but rather

only to a user-defined end point, thereby speeding up the

process.
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Fig. 1. Flow diagram of GSV-based ranking method

IV. STUDY INFRASTRUCTURE

To evaluate the effectiveness of the proposed ranking

method, we use a complex, high performance microprocessor

model named IVM (Illinois Verilog Model) [16]. IVM is a

Verilog model resembling an Alpha 21264 microprocessor and

implementing a subset of its instruction set. IVM features a

12-stage pipeline with up to 132 instructions in flight and

many modern high performance features, such as out-of-

Fig. 2. Instruction scheduler diagram

order execution, hybrid branch prediction, dynamic schedul-

ing, speculative execution and memory dependence prediction.

The high performance features implemented require a large

number of control state elements, which are the main target

of this study.

Specifically, we analyze the instruction scheduler, which is

a key control module of the out-of-order logic. The sched-

uler occupies approximately 16% of the microprocessor area,

excluding the caches and the fetch unit, and contains 5,664

control state elements. A diagram of its operation is shown in

Fig. 2. The scheduler receives up to 4 instructions from the

rename unit, maintaining a buffer of up to 32 instructions. The

scheduler dispatches up to 6 instructions (one for each of the

six functional units in IVM) depending on the availability of

instructions and any data or structural hazards. Its control fields

include the program counter, valid and issued bits, functional

unit designator, instruction tag, source/destination register

pointers etc., fields that are utilized in many control units of

the microprocessor. Given its complicated operation and rich

set of control fields, the instruction scheduler constitutes an

excellent candidate for our analysis.

Since the IVM model implements only a subset of the Alpha

ISA, a functional simulator [17] is also used in conjunction

with the RT-Level model. The functional simulator can execute

a number of instructions before transferring the state to the RT-

Level model and can also execute a workload to its completion

after the state is transferred back from the RT-Level model.

Fault injection is performed during RT-Level simulation by

mutating the microprocessor model. More information about

the infrastructure as well as the fault injection technique can

be found in [18].

V. EXPERIMENTAL RESULTS

In this section, we experimentally compare the ranked lists

generated based on AVF and GSV in terms of accuracy and

simulation time, and we discuss the results.
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TABLE I
STATISTICS FROM EXECUTING UTILIZED BENCHMARKS FOR 10,000 CLOCK CYCLES

Stalls due Stalls due
SPEC Instructions Conditional Cache to not enough to full Application

Benchmark retired branches accesses free registers memory unit Masking
Training set

bzip 7015 577 4037 121 24 92%
mcf 2548 91 3823 0 4144 94%

cc 1932 227 2933 4 711 89%
Evaluation set

perlbmk 1392 122 2589 1 479 95%
crafty 9765 1765 5265 0 0 95%

eon 3359 296 3592 0 352 97%

A. Experimental Setup

A training set of three different benchmarks, namely bzip,

mcf and cc is used to generate the two lists and an evaluation

set of three more benchmarks, perlbmk, crafty and eon is

used for comparing them. The chosen benchmarks represent a

variety of typical workload, such as memory intensive, heavy

branch usage or high instruction throughput applications. Table

I lists some statistics for the workloads utilized. Consistent

with the results shown in [13], all these benchmarks exhibit

very high application-level masking. All 5,664 control state

elements of the instruction scheduler of the IVM micropro-

cessor are used in this study; all simulations are performed

using the infrastructure described in section IV on two servers

with two Quad-Core processors each.

1) Generating AVF-based ranking: In order to rank the

control state elements based on AVF, we repeat the fault

injection campaign described in [13]. Specifically, 6,000 tran-

sient errors are injected in each of the 5,664 control state

elements uniformly at random over a time period of 10,000

clock cycles. The IVM model is warmed-up for 50,000 clock

cycles using the functional simulator, the 10,000 clock cycles

are subsequently executed at the RT-Level, and then the

benchmark continues execution until completion using the

functional simulator. The AVF of each control state element

is computed as the ratio of incorrect over all 6,000 fault-

injected executions. This process is repeated for each of the

three different benchmarks in the training set and the final

ranked list of control state elements is generated based on the

average AVF.

2) Generating GSV-based ranking: Table II lists the global

signals which we use for generating the GSV-based ranking of

state elements in the IVM scheduler. This selection includes

memory access signals (i.e. register file, l1cache, etc.) as well

as global error flag signals (i.e. stall, tlbmiss, etc.). Using

these signals, the single-pass stuck-at fault injection method

described in section III is applied for each of the 5,664 control

state elements, both for stuck-at-0 and stuck-at-1 faults. Again,

50,000 clock cycles are used for warm-up in the functional

simulator, followed by the progressive stuck-at fault injection

during the execution of 10,000 clock cycles at the RT-Level.

Note that in the GSV-based ranking method the benchmarks do

not need to be executed to completion; hence, simulation stops

at this point and the GSV of each state element is computed

as the number of times a discrepancy in one of the global

TABLE II
GLOBAL SIGNALS MONITORED

Signal Name Description
PC next Control flow violation
itlbmiss Invalid instruction pointer

Stall Global stall signal
val out Register file corruption

data[1-2] out, addr[1-2] out Off-chip memory access discrepancy
dtlbmiss Invalid memory access

microprocessor signals occurs during the fault-injected RT-

Level execution of the 10,000 clock cycles. This process is

repeated for each of the three different benchmarks in the

training set and the final ranked list of control state elements

is generated based on the average GSV.

B. Results

We now compare and assess the accuracy of the two ranked

lists, as well as the simulation time required to generate them.

1) Positional comparison of ranked lists: The average po-

sitional difference of a state element in the two ranked lists is

24. Given that the lists consist of 5,664 elements, this amounts

to 0.42%, implying that the two ranked lists are very similar.

2) Coverage comparison of ranked lists: Fig. 3 reports

the coverage achieved by each of the two ranked lists for

each of the three benchmarks in the training set and each

of the three benchmarks in the evaluation set. The Y-axis

represents the percentage of transient errors that are suppressed

by protecting the corresponding percentage of the 5,664 state

elements shown in the X-axis. As a point of reference, a

third curve (i.e. biased) is also plotted for each benchmark,

reflecting an optimal state element ranking with regards to this

particular benchmark only. As may be observed, both the AVF-

based and the GSV-based ranked lists achieve near-optimal

coverage and the difference between them is very small. The

average difference between the coverage achieved by the AVF-

based and the GSV-based ranked lists over any percentage of

protected state elements is 1.4%.

3) Simulation times: The main advantage of the presented

technique lies in the simulation times required to generate

the near-optimal ranking of control state elements. Table III

contrasts the time required for calculating the AVF-based and

GSV-based ranked lists. The GSV-based method achieves a

1,215x speed-up over the AVF-based method. This difference

in simulation time is expected since the GSV-based method
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(a) bzip (b) mcf

(c) cc (d) perlbmk

(e) crafty (f) eon

Fig. 3. Coverage comparison of AVF-based and GSV-based ranked lists

collects ranking data for a state element in 6 passes (i.e. two

passes, one for stuck-at-0 and one for stuck-at-1 faults, for

each of the three benchmarks in the training set), while the

AVF-based method performs statistical transient error injection

and requires 18,000 passes (i.e. 6,000 transient errors for each

of the three benchmarks in the training set). Furthermore,

benchmarks in the GSV-based method are not run to com-

pletion, thus saving additional time. However, each stuck-at

fault simulation pass in the GSV-based method is slower than

a transient error injection pass in the AVF-based method due to

the overhead of clearing the faulty machine state and resuming

the simulation. Nevertheless, the overall speedup exceeds three

orders of magnitude while the ranking accuracy is minimally

impacted.

163



TABLE III
RANKING SPEED-UP

SPEC CPU hours
Benchmark AVF1 GSV GSV speedup

bzip 6,173 5.42 1,138x
mcf 8,850 6.51 1,359x

cc 6,490 5.79 1,120x
Total 21,513 17.7 1,215x

1 10,000 clock cycles run in the RT-Level model and
the rest in the functional simulator.

C. Discussion

The simulation times needed to generate a ranked list of

control state elements based on their criticality to workload

execution using RT-Level estimation of the AVF metric [13]

is prohibitive for a full microprocessor model. As can be

observed in Table III, ranking the control state elements of

only the instruction scheduler while utilizing a limited set

of 3 benchmarks required 2 months of extensive simulations

on 16 microprocessor cores, rendering any extensive study

infeasible. Thus, the speed-up achieved by the presented GSV-

based ranking method is essential in order to enable a designer

to perform full-scale analysis of microprocessor control state

elements within a reasonable time.

The results of this analysis can be used to guide an ef-

ficient allocation of resources, aiming to maximize reliability

improvement given a certain budget. For example, if a designer

is allowed to allocate 10% of the area for protecting the most

important control state elements, the presented method can

provide a rapid, yet still accurate ranking of the control state

elements based on their criticality to instruction execution

correctness.

Besides the absolute ranking of state elements, such analysis

results can further provide insight to the designer with regards

to vulnerable portions of the modules. Browsing through

the ranked lists for the IVM scheduler, we notice storage

elements that are obvious candidates and are expected to

cause problems when unprotected, such as the issue_head
or issue_tail pointers. However, among the top ranked

state elements we also find unexpected ones which are not

straightforward high-risk candidates, such as a set of registers

called temp_full, which temporarily holds portions of the

instruction to be issued. Using this information, the designer

may choose to refine the design taking into account the

criticality of the various control state elements.

VI. CONCLUSION

This study reveals a strong correlation between the proba-

bility that transient errors in a control state element will affect

the outcome of a program and the vulnerability of select global

microprocessor signals to stuck-at faults in this state element.

This correlation is leveraged by the method described herein

in order to quickly and accurately rank control state elements

based on their criticality to application execution correctness.

Experimental results demonstrate that the ranked state element

list obtained by the proposed method is very similar to the one

obtained using the AVF metric, yet the time needed to generate

it is three orders of magnitude faster.
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