
Exponent Monitoring for Low-Cost
Concurrent Error Detection in FPU Control Logic

Michail Maniatakos
EE Department
Yale University

michail.maniatakos@yale.edu

Yiorgos Makris
EE & CS Departments

Yale University
yiorgos.makris@yale.edu

Prabhakar Kudva
IBM T. J. Watson
Research Center

kudva@us.ibm.com

Bruce Fleischer
IBM T. J. Watson
Research Center

fleischr@us.ibm.com

Abstract—We present a non-intrusive concurrent error de-
tection (CED) method for protecting the control logic of a
contemporary floating point unit (FPU). The proposed method
is based on the observation that control logic errors lead to
extensive datapath corruption and affect, with high probability,
the exponent part of the IEEE 754 floating point representation.
Thus, exponent monitoring can be utilized to detect errors in
the control logic of the FPU. Predicting the exponent involves
relatively simple operations, therefore our method incurs signifi-
cantly lower overhead than the classical approach of duplicating
the control logic of the FPU. Indeed, experimental results on the
openSPARC T1 processor show that, as compared to control logic
duplication, which incurs an area overhead of 17.9% of the FPU
size, our method incurs an area overhead of only 5.8% yet still
achieves detection of over 95% of transient errors in the FPU
control logic. Moreover, the proposed method offers the ancillary
benefit of also detecting 98.1% of datapath errors that affect the
exponent, which cannot be detected via duplication of control
logic. Finally, when combined with a classical residue code-based
method for the fraction, our method leads to a complete CED
solution for the entire FPU which provides a coverage of 94.4%
of all errors at an area cost of 16.32% of the FPU size.

I. INTRODUCTION

As aggressive scaling continues to push technology into
smaller feature sizes, various design robustness concerns
continue to arise. Among them, the frequent occurrence of
transient errors [1] has resurfaced as a contemporary problem
of interest. This problem is mainly attributed to strikes by
neutrons or alpha particles and the corresponding single event
upsets (SEUs) in memory bits, or single event transients
(SETs) in combinational logic, which may potentially result
in a soft error. However, several other factors such as design
marginalities, Negative Bias Temperature Instability (NBTI),
coupling, power supply noise, etc. [2], [3] also threaten the
robustness of modern microprocessor units. The increasing
severity of the above threats has spawned renewed efforts
in developing cost-effective concurrent error detection (CED)
methods for various key components of a circuit.

Floating point units (FPUs), in particular, are among the
most crucial and hardest to protect [4], [5]. And while progress
is being made on solutions using error detecting/correcting
codes for the datapath portion of an FPU [6], [7], [8], little is
known about its control logic, where either duplication [9]
or Triple Modular Redundancy (TMR) [10] techniques are
usually applied. Control logic errors might have catastrophic
impact on the FPU output [11], [12], jeopardizing the appli-
cation execution and providing the end-user with erroneous
results. Furthermore, the size of control logic in modern FPUs
is significant, often amounting up to 20% of the FPU size, thus
rendering necessary the application of error detection methods.

In this study, we propose an alternative method to protect
the control logic of an FPU by monitoring the exponent part
of the floating point representation. Our method is based on
the conjecture that a control logic error will incorrectly guide
the datapath and, by extension, severely alter the expected
outcome of the performed operation. As a result, it is highly
likely that a control logic error will modify the value of the
exponent portion of the floating point output. Given that it
is relatively straightforward to calculate the correct exponent
through simple operations, monitoring exponent correctness
leads to an inexpensive yet very efficient CED method for
the FPU control logic. Furthermore, it provides the ancillary
benefit of detecting errors in the exponent part of the repre-
sentation and, when combined with a residue code-based error
detection method for the fraction, it results in a very low-cost
CED solution for the entire FPU.

The rest of the paper is organized as follows: Section
II briefly describes existing techniques for the protection of
FPUs. Section III describes the proposed exponent monitoring-
based CED method, followed by section IV where the de-
velopment of the simulation-based experimental infrastructure
and the actual CED implementation is presented. The merit
figures of the proposed method, namely the attained coverage
and incurred overhead, are assessed in section V, followed by
conclusions in section VI.

II. ERROR DETECTION IN FPUS

Several error detection methods have been proposed for
protecting FPUs. Most of them, however, target the datapath
and have been ported from the corresponding techniques for
integer arithmetic, while methods specifically designed to
protect the FPU control logic have yet to be developed.

A. Datapath

The most popular technique for reliable arithmetic opera-
tions is residue codes [13], [14], [15]. Low-cost residue codes
are single arithmetic error detecting codes with unidirectional
error detecting capabilities. The efficiency of residue codes
depends on the selection of the check base b. The higher
the base the more errors the code will detect, yet also the
more expensive the hardware overhead which will be incurred.
Popular base selections are b = 15 (4 bits) and b = 3 (2
bits). In both cases the resulting modulo circuit is highly
simplified and the theoretical error detection percentage is
1− (1/24) = 93.4% for b = 15 and 1− (1/22) = 75% for b
= 3. Residue codes have been successfully applied to various
designs [7], [16], [17].

2011 29th IEEE VLSI Test Symposium

978-1-61284-656-9/11/$26.00 ©2011 IEEE 235

Other techniques include Berger codes [18], [19] and two-
rail checkers [20], [16]. Berger codes are optimal unidirec-
tional error detecting codes. ALUs using Berger encoded
operands have been shown to be strongly fault-secure [7], [11].

B. Control Logic

The simplest and most straightforward CED solution for
random logic, such as the control logic of the FPU, is du-
plication [9]. The main advantage of duplication is simplicity
and applicability to any given design. However, the > 100%
area overhead (including the comparators) and the extra delay
required for checking make duplication less appealing for
modern FPUs. Furthermore, control in modern, pipelined
FPUs is distributed across multiple components, necessitating
manual and tedious effort to identify and replicate it.

Triple Modular Redundancy (TMR) [10] has similar prop-
erties to duplication, with the added advantage of error correc-
tion. However, the hardware overhead of > 200% (including
the voter) makes it prohibitive for commercial designs.

III. PROPOSED CED METHOD

Our method is based on the conjecture that an error in
the control logic will lead to extensive datapath corruption,
which will propagate to the exponent part of the floating point
representation. Numerous examples can be provided to show
the impact of control errors on the exponent and justify our
approach:
• Special case control: The control logic identifies whether

the input operands are NaN (Not a Number), Infinity,
0, etc. Mishandling of special cases due to errors will
result in a completely different output with an incorrect
exponent. For example, any operation with NaN results in
a NaN. If the control logic mistreats a normal operand as
NaN, then the operation 3*5 will result in NaN (exponent
= 255) instead of 15 (exponent = 130).

• Algorithm stage control: All floating point operations go
through several stages before generating the final results.
In case a stage is skipped or repeated (e.g. one more or
one less division round is performed) due to a control
error, the result will be incorrect and is likely to be
reflected in the exponent.

• Select lines: Control logic is responsible for driving the
correct operands to the datapath. In case an error occurs
and the control drives a 0 instead of a 7, the operation
7*18 will result in a 0 (exponent = 0) instead of 126
(exponent = 133).

• Operation control: Along with the operands, the control
logic also drives the signals for the operation selection.
Therefore, if due to an error the operation changes, say
from addition to subtraction, then the operation 2.0+1.9
will result in 0.1 (exponent of 123) instead of 3.9 (expo-
nent of 128).

These are only a few examples of datapath corruption due
to control logic errors, supporting our conjecture that errors
in the FPU control logic can be detected by monitoring the
datapath. Since the exponent part of the datapath is likely to be

affected and fairly simple to calculate [21], we seek to develop
a low-cost CED method for the control logic by predicting and
verifying the exponent part of the floating point result.

A. Calculating the exponent

In this section, we discuss the exponent calculation for
each of the three types of FPU functions, namely arithmetic
operations, conversions and other operations. We note that the
exponent is calculated independently of the fraction operation,
hence the result is not exact since possible fraction normal-
ization may affect the final value of the exponent.

1) Arithmetic operations: The first category is arithmetic
operations, such as additions, subtractions, multiplications and
divisions. We remind that the IEEE 754 representation of
normalized floating point operands is (−1)s ∗ 1.f ∗ 2e, where
s is the sign, f is the fraction and e the exponent. Thus,
multiplication and division exponent calculation is simple, i.e.,

((−1)s1 ∗ 1.f1 ∗ 2e1) ∗ ((−1)s2 ∗ 1.f2 ∗ 2e2)
= (−1)s1+s2 ∗ 1.f1 ∗ 1.f2 ∗ 2e1+e2

(1)

for multiplication and

((−1)s1 ∗ 1.f1 ∗ 2e1)/((−1)s2 ∗ 1.f2 ∗ 2e2)
= (−1)s1+s2 ∗ 1.f1/1.f2 ∗ 2e1−e2

(2)

for division. So we simply need to add (for multiplication) or
subtract (for division) the exponents, operations which can be
performed by the same hardware structure. In case the fraction
overflows and needs to be normalized, the exponent needs to
be adjusted accordingly. Hence, for arithmetic operations, we
can only predict the exponent of normalized results with a ±1
accuracy. Consequently, if an erroneous result differs from the
correct result by 1, error masking will occur. However, our
conjecture is that, in the presence of a control logic error, the
datapath is corrupted extensively, hence the probability of such
masking is very low. Indeed, the results presented in section
V corroborate this conjecture.

For addition and subtraction, the exponent is the largest
of the two operand exponents, therefore a simple comparator
suffices to calculate it (similar to the multiplication/division
cases, normalization may be required). This does not apply
in the case of cancelation (i.e., when there is a subtraction
of operands with equal exponents or exponents that differ
by 1). In this case, the exponent can take a wide range of
values and cannot be computed accurately without information
from the fraction. In order to moderate cost, our CED method
taps into the existing FPU hardware in order to obtain this
information (rather than replicating it), hence error masking
due to common mode failures may occur. Nevertheless, as we
show in the results Section V, such masking is very small.

2) Conversions: Another common operation performed in
FPUs is conversion from/to integer/floating point representa-
tions. The exponent of the results can be exactly calculated
by appropriately offsetting the input operand. For floating
point precision conversions (single to double and vice versa),
the exponent needs to be offset by ±896, since the actual
exponent is es − 127 in single precision and ed − 1023 in

236

TABLE I
OPENSPARC T1 FLOATING POINT INSTRUCTIONS

Fraction
Operation Result Exponent Normalization
Addition max(e1, e2) Yes
Subtraction max(e1, e2)1 Yes
Multiplication e1 + e2 Yes
Division e1 − e2 Yes
Single to Double e1 + 896 No
Double to Single e1 − 896 No
Integer to Single MSB(i1) + 127 No
Integer to Double MSB(i1) + 1023 No
Negation e1 No
Absolute Value e1 No

1 Equal or different-by-1 exponents may lead to cancelation.

double precision. Thus, for single to double conversion, the
exponent is ed = (es − 127) + 1023 and for double to single
es = (ed−1023)+127. For integer conversions, the exponent
is a function of the most significant bit. Table I summarizes
the exponent operation for different FPU functions.

3) Other operations: Modern FPUs usually implement
more operations, such as absolute value, negation and com-
parison. In all these operations, the exponent is very simple to
calculate. Negation/absolute value operations affect only the
sign (i.e., the exponent is the same). Comparison operation
results are implementation specific, as the output result is
the comparison result and not a floating-point number. For
example, SPARC ISA defines the exponent field of the output
as 0, and the comparison result is stored in the flags field.

IV. EXPERIMENTAL SETUP

In order to assess the effectiveness of our method we
built an extensive simulation infrastructure to perform error
injection experiments. Since our target is transient errors, we
need to perform a large number of injections; therefore, the
infrastructure must support very fast simulations and error
impact evaluation.

A. Test Vehicle

The test vehicle of our study is the register transfer-level
(RTL) model of the openSPARC T1 microprocessor [22], the
open source version of the UltraSPARC T1 microprocessor.
The openSPARC T1 processor has eight SPARC processor
cores which have full hardware support for four threads. Each
SPARC CPU core can send a packet to the shared Floating
Point Unit (FPU), using the cache-processor crossbar (CPX).
Conversely, the FPU can send a packet to any one of the eight
cores using the processor-cache crossbar (PCX). A floating
point instruction is delivered from the cores to the FPU in
either one- (single operand instructions) or two-packet transfer.
One source operand is transferred in each cycle and the
crossbar always provides a two-cycle transfer. In case of single
operand instructions, an invalid transfer is produced in the
second cycle [23].

Since the FPU is a single shared resource, each of the eight
SPARC cores may have a maximum of one FPU instruction
waiting to be executed. Thus, the FPU can hold up to 8
instructions at a given time. The FPU implements the SPARC
V9 floating-point instruction set, and is fully compliant with

Fig. 1. T1 FPU Functional Block Diagram [23]

the IEEE 754 standard [24]. The floating point register file and
floating point state register are in the SPARC core Floating
point Front-end Unit (FFU), which is unique for every core
(and not shared like the FPU).

The FPU includes three execution pipelines:
• Floating-point adder (FPA): Executes additions, subtrac-

tions, comparisons and conversions
• Floating-point multiplier (FPM): Executes multiplications
• Floating-point divider (FPD): Executes divisions
Incoming instructions are stored in a 16 entry x 155 bit FIFO

queue (unless the FIFO is empty, in which case it is bypassed).
In each cycle, one instruction may be issued from the FIFO
and one instruction may complete and exit the FPU. Fig. 1
shows a block diagram with the three independent pipelines.
Not-a-Number (NaN) source propagation is supported by
steering the NaN source through the pipeline to the result.

B. CED implementation

The FPU is a shared resource with multiple floating-point
instructions in flight. Moreover, the latency of some floating-
point instructions (i.e. division) is variable and cannot be
predicted a priori. Hence, it is not possible to predict which
instruction should exit the FPU at each time. Instead, the
exponents calculated for each incoming instructions are stored
in an array which is indexed using the CPU ID of the outgoing
instruction. The CPU ID is a unique identifier because each
of the 8 cores can have a maximum of one outstanding FPU
instruction. A thread with an outstanding FPU instruction
switches out while waiting for the FPU result. This allows
up to 8 instructions to be in the FPU. Therefore, storing the
signatures requires a memory with 8 entries.

The block diagram of the CED implementation for the
openSPARC T1 is presented in Fig. 2. This implementation
applies to any pipelined FPU that executes multiple floating
point instructions, such as the IBM PowerPC 405 FPU, Intel
Pentium FPU and the SPARC T2. In case an FPU executes
only one instruction at a time, the memory array is not needed
and the output result can be checked directly.

The ±1 exponent component presented in the diagram is
needed for the arithmetic operations that may require fraction
normalization, as explained in Section III-A1.

C. Experiment flow

Fig. 3 shows the data flow of our experiments. First, we
use a python-based assembly generator which we developed
to generate multi-threaded (MT) assembly utilizing floating
point instructions. This synthetic workload is then simulated
in the openSPARC T1 environment using sims, and Value
Change Dump (VCD) traces are collected at the input of the
FPU. These traces are then converted to a separate testbench

237

Fig. 2. Block Diagram of Proposed CED Structure

Fig. 3. Simulation Infrastructure

using Synopsys vcat. This testbench can be simulated using
Synopsys vcs without the need to simulate the entire micro-
processor model, leading to a 10x simulation speed-up.

The assembly generator can generate up to 32 different
assembly files, one for each thread. The user can specify the
percentage of the floating-point instructions in the file, as well
as the desired number of instructions for each pipeline (FPA,
FPM, FPD). Floating point registers are randomly selected
for each instruction. 10 of the registers contain special values
(NaNs, Inf, 0) to ensure operations with special numbers.
Transient error injection is performed during simulation by
mutating the microprocessor model for one clock cycle using
the parallel saboteurs technique. An extensive description of
the RTL error injection method can be found in [25].

The transient error injection is controlled by a python script
through Verilog Procedural Interface (VPI) calls. The same
script is used for error classification, with the help of a golden
model that runs in parallel with the injected FPU model.

D. Hardware synthesis

In order to provide hardware overhead estimates, we syn-
thesized the FPU model using Synopsys Design Compiler
targeting a 90nm library. The timing constraints were set to
a clock period of 1GHz, to match the running speed of the
UltraSPARC T1. The total area of the synthesized FPU is
816,660µm2 (587,947µm2 combinational, 181,110µm2 non-
combinational and 47,601µm2 net interconnect area). Figure 4
shows the hierarchy of the FPU along with the area percentage
of each main module. The *_CTL and *_DP blocks represent
the pure control and the datapath portion of each module,
respectively. The largest module is the 54x54 multiplier. The
division pipeline is rather small (and, naturally, rather slow at
the same time). The model also contains a few more very
small modules, such as repeaters (to optimize timing) and
scan-control modules, which are not shown in the figure. These
modules along with the pipeline registers and the wiring add
up to the remaining 23.3% of the FPU area. Overall, the
control logic amounts to 16.1% of the FPU size.

V. EXPERIMENTAL RESULTS

This section describes the experimental results that support
our conjectures. We simulated the openSPARC T1 micropro-
cessor using two different types of synthetic workload: The
first one (FP-100) consists of 100% floating point operations,
to resemble applications with intense need for floating point
calculations. The second (FP-1) consists of 1% floating point
instructions, matching the profile of common applications that
place very little demand on the FPU. On average, FP-100
had 5 floating point instructions in the FPU (either executing
or queued) and a maximum of 8 (one floating point instruction
from each core). In contrast, FP-1 had an average of 1 and a
maximum of 4 floating point instructions in the FPU. For each
of the two workloads, 5 million transient errors were injected,
uniformly distributed over time and location across the FPU.

A. FPU Error Impact Analysis

The first set of results, shown in Table II, present statistics
regarding the impact of injected errors on the FPU output.
As expected in a transient error injection campaign, masking
is very high; indeed, among the injected errors, only 2.13%
for FP-100 and 1.45% for FP-1 reach the FPU output (i.e.
non-masked errors). FP-1 has fewer non-masked errors since

238

Fig. 4. FPU Hierarchy and Area Breakdown

fewer instructions flow through the FPU at the same time,
thus increasing the chance for a transient error to strike on an
inactive part. However, the distribution of non-masked errors
is similar for the two different workloads.

The key observation from these results is that the average
non-masked error rate of control modules (_CTL) for FP-
100 is 9.2% (i.e., 1 out of 10 transients affect the FPU), a
percentage that is is much higher than the average non-masked
rate of datapath modules for the same workload, which is only
1.63%. In other words, errors in the control logic are six times
more likely to affect the output than errors in the datapath.
This supports our claim that, despite the control logic being
smaller (i.e., 16.1% of the FPU size), protecting it is necessary
for ensuring reliable FPU operation.

We also point out that the percentage of non-masked errors
varies among the different control modules, with in_ctl,
div_ctl and out_ctl having higher percentages. This is
expected for the in_ctl and out_ctl modules, since all
instructions have to go through them and they always contain
critical information regarding instruction execution. As for
div_ctl, division instructions have 10 times more latency
than other instructions (up to 61 cycles), so the probability
that the FPD pipeline will be occupied by a valid instruction
during the workload execution is much higher.

B. Exponent Monitoring vs. Duplication for Control Logic

The second set of results, shown in Table III, compare the
proposed exponent monitoring method to traditional duplica-
tion for performing CED in the FPU control logic.

In terms of area overhead, the cost of duplication is 17.9%
of the FPU size, of which 16.1% is to replicate the control
logic and 1.8% is to compare. In contrast, the proposed
exponent monitoring incurs only one third of this cost, for a
total of 5.8% of the FPU size. Both methods operate in parallel
with the FPU and do not cause noticeable delay overhead.

TABLE II
ERROR CLASSIFICATION STATISTICS

FP-100 FP-1
of Non- # of Non-

Injected Masked Injected Masked
Module Errors Errors Errors Errors
fpu top 495,585 2.78% 509,648 2.01%

in 86,501 3.97% 89,888 2.79%
in ctl 33,117 12.13% 34,066 10.97%
in dp 163,318 2.78% 167,595 1.87%

add 54,646 1.43% 55,874 1.28%
add ctl 92,062 2.04% 94,832 1.76%

add exp dp 105,283 0.44% 108,368 0.57%
add frac dp 567,209 0.59% 582,034 0.43%

mul 75,006 1.98% 77,442 1.31%
mul ctl 59,829 3.71% 61,907 2.81%

mul exp dp 54,652 2.29% 55,953 1.48%
mul frac dp 2,885,318 1.60% 2,961,476 0.89%

div 36,552 7.70% 37,228 5.51%
div ctl 52,266 11.93% 53,915 9.53%

div exp dp 27,038 4.50% 27,421 3.34%
div frac dp 182,919 4.45% 189,131 3.83%

out 42,125 4.74% 43,234 3.49%
out ctl 7,052 16.42% 7,229 15.83%
out dp 86,758 4.37% 89,132 3.06%

Total 5,107,236 2.13% 5,246,373 1.45%

TABLE III
EXPONENT MONITORING VS. DUPLICATION

FPU Control Area Coverage of
CED Method Overhead Control Exponent Fraction
Duplication 17.9% 100% - -

Monitor Exponent 5.8% 95.1% 98.1% 15%

In terms of effectiveness, exponent monitoring detects
95.1% of control logic errors, as opposed to the 100% cover-
age provided by duplication. The remaining 4.9% is attributed
to control logic errors which only affect the fraction portion of
the result and never propagate to the exponent, as we explained
in section III-A1. However, exponent monitoring provides the
ancillary benefit of also covering 98.1% of the errors that
affect the exponent, which control logic duplication is unable
to detect. Once again, the small error masking of 1.9% is
because of the ±1 comparison and because of cancelation, as
explained in section III-A1. The implication of this ancillary
benefit is that no additional CED method is needed to cover
the exponent portion. These results corroborate our conjecture
that most errors in the control logic will result in an incorrect
exponent and support the cost-effectiveness of our exponent
monitoring-based CED method for FPU control logic.

C. Cost-Effective CED for Entire FPU

The last set of results examines the utility of exponent
monitoring in developing a cost-effective CED method for the
entire FPU. We note that, as shown in Table III, exponent
monitoring also detects around 15% of the errors that only
affect the fraction portion of the floating point representation,
which the duplication method is unable to detect. Yet this
percentage is very small, hence additional steps need to be
taken in order to provide a complete FPU CED solution. To
this end, we investigate how our method can be combined with
a base-15 residue code for the fraction, in order to reduce the
overall CED cost for the FPU. Specifically, we compare three
alternative scenarios: (i) using base-15 residue codes for the

239

TABLE IV
COMPARISON OF CED SOLUTIONS FOR ENTIRE FPU

Detection Method Coverage Hardware
Control Exponent Fraction Control Exponent Fraction Total Overhead

- Res-15 Res-15 0% 94.3% 94.3% 59.2% 14.82%
Duplication Res-15 Res-15 100% 94.3% 94.3% 96.2% 29.78%

Exponent Monitoring Res-15 95.1% 98.1% 94.3% 94.4% 16.32%

fraction and the exponent but leaving the control unprotected,
(ii) adding control logic duplication to the above solution, and
(iii) combining exponent monitoring with base-15 residue code
only for the fraction (since the exponent is already covered).

The results reported in Table IV demonstrate two key
points: First, if control is left unprotected, the overall fault
coverage would be a mere 59.2%. This shows, once again,
that protection of control logic is necessary in modern FPUs.
Second, the proposed exponent monitoring method enables a
complete FPU CED solution that provides almost equivalent
coverage to the duplication-based solution (i.e., 94.4% vs.
96.2%), yet incurs almost half of the cost (i.e., 16.32% vs.
29.78%), thereby constituting a very appealing option.

VI. CONCLUSION

We presented a novel method for detecting transient errors
in the control logic of a modern FPU. We demonstrated that
errors in the control logic lead to an extensive corruption of
the datapath and, by extension, have a high probability of
affecting the exponent field of the operation output. Therefore,
independently calculating and validating the exponent of the
outgoing packet provides very high coverage to such errors. As
demonstrated on the openSPARC T1 processor, the proposed
exponent monitoring-based CED method costs less than one
third of the cost of duplicating the control logic, while main-
taining over 95% of its coverage. Moreover, in conjunction
with a known residue code-based method for the fraction of
the floating point representation, it facilitates a complete CED
solution which offers over 94% coverage for the entire FPU
at the cost of 16.32% of its size, which to our knowledge,
constitutes the most cost-effective approach to date.

REFERENCES

[1] Y. Savaria, N.C. Rumin, V.K. Agarwal, and J.F. Hayes, “Soft-
error filtering-A solution to the reliability problem of future
VLSI digital circuits,” in IEEE Proceedings, 1986, vol. 74, pp.
669–683.

[2] C. Metra, M. Favalli, and B. Ricco, “On-line detection of
logic errors due to crosstalk, delay, and transient faults,” in
International Test Conference, 1998, pp. 524–533.

[3] T. Karnik, P. Hazucha, and J. Patel, “Characterization of soft
errors caused by single event upsets in cmos processes,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, no.
2, pp. 128–143, 2004.

[4] J. Gaisler, “Concurrent error-detection and modular fault-
tolerance in a 32-bit processing core for embedded space flight
applications,” in IEEE International Symposium on Fault-
Tolerant Computing, 1994, pp. 128–130.

[5] A. Naini, A. Dhablania, W. James, and D. Das Sarma, “1 GHz
HAL SPARC64R Dual Floating Point Unit with RAS features,”
in IEEE Symposium on Computer Arithmetic, 2001, pp. 173–
183.

[6] P. Eibl, A. Cook, and D. Sorin, “Reduced precision checking
for a floating point adder,” in IEEE International Symposium on
Defect and Fault Tolerance of VLSI Systems, 2009, pp. 145–152.

[7] J.C. Lo, “Reliable floating-point arithmetic algorithms for error-
coded operands,” IEEE Transactions on Computers, pp. 400–
412, 1994.

[8] S.M.H. Shekarian, A. Ejlali, and S.G. Miremadi, “A Low Power
Error Detection Technique for Floating-Point Units in Embedded
Applications,” in IEEE/IFIP International Conference on Em-
bedded and Ubiquitous Computing, 2008. EUC’08, 2008, vol. 1.

[9] TEMIC, “TSC692E Floating-point Unit User’s Manual for
Embedded Real Time 32 bit Computer (ERC32),” 1996.

[10] W.L. Gallagher and E.E. Swartzlander, “Fault-tolerant Newton-
Raphson and Goldschmidt dividers using time shared TMR,”
IEEE Transactions on Computers, pp. 588–595, 2000.

[11] J.C. Lo, S. Thanawastien, T.R.N. Rao, and M. Nicolaidis, “An
SFS Berger check prediction ALU and its application toself-
checking processor designs,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 11, no. 4,
pp. 525–540, 1992.

[12] G.G. Langdon and C.K. Tang, “Concurrent error detection for
group look-ahead binary adders,” IBM Journal of Research and
Development, vol. 14, no. 5, pp. 563–573, 1970.

[13] A. Avizienis, “Arithmetic algorithms for error-coded operands,”
IEEE Transactions on Computers, vol. 22, no. 6, pp. 567–572,
1973.

[14] E. Kinoshita, H. Kosako, and Y. Kojima, “Floating-point
arithmetic algorithms in the symmetric residue number system,”
IEEE Transactions on Computers, vol. 100, no. 23, pp. 9–20,
1974.

[15] A. Sasaki, “The Basis for Implementation of Ad idive Oper-
ations in the Residue Number System,” IEEE Transactions on
Computers, vol. 100, no. 17, pp. 1066–1073, 1968.

[16] D.A. Anderson and G. Metze, “Design of totally self-checking
check circuits for m-out-of-n codes,” IEEE Transactions on
Computers, vol. 100, no. 22, pp. 263–269, 1973.

[17] A. Avizienis, G.C. Gilley, F.P. Mathur, D.A. Rennels, J.A.
Rohr, and D.K. Rubin, “The STAR (self-testing and repairing)
computer: An investigation of the theory and practice of fault-
tolerant computer design,” IEEE Transactions on Computers,
vol. 100, no. 20, pp. 1312–1321, 1971.

[18] J.M. Berger, “A note on error detection codes for asymmetric
channels,” Information and Control, vol. 4, no. 1, pp. 68–73,
1961.

[19] M.A. Marouf and A.D. Friedman, “Design of self-checking
checkers for Berger codes,” in IEEE International Symposium
on Fault-Tolerant Computing, 1978, vol. 8, pp. 179–184.

[20] M. Nicolaidis, “Self-exercising checkers for unified built-in self-
test (UBIST),” IEEE Transactions on Computer-Aided Design,
vol. 8, no. 3, pp. 203–218, 1989.

[21] D. Goldberg, “What every computer scientist should know
about floating-point arithmetic,” ACM Computing Surveys
(CSUR), vol. 23, no. 1, pp. 5–48, 1991.

[22] Sun Microsystems, “OpenSPARC T1 specifications,”
http://www.opensparc.net/opensparc-t1/index.html.

[23] Sun Microsystems, “OpenSPARC T1 Microarchitecture Speci-
fication,” 2006.

[24] D. Stevenson et al., “IEEE standard for binary floating point
arithmetic,” ACM SIGPLAN Notices, vol. 22, no. 2, pp. 9–25,
1987.

[25] M. Maniatakos, N. Karimi, A. Jas, Tirumurti, and Y. Makris,
“Instruction-level impact analysis of low-level faults in a modern
microprocessor controller,” IEEE Transactions on Computers
(TCOMP), 2010 (to appear).

240

