
2012 IEEE 30th VLSI Test Symposium (VTS)

Proof Carrying-Based Information Flow Tracking
for Data Secrecy Protection and Hardware Trust

Yier Jin∗ and Yiorgos Makris†
∗Department of Electrical Engineering, Yale University

†Department of Electrical Engineering, The University of Texas at Dallas
{yier.jin@yale.edu, yiorgos.makris@utdallas.edu}

Abstract—We discuss a new approach for protecting the
secrecy of internal information in an Integrated Circuit (IC)
from malicious hardware Trojan threats and, thereby, enhancing
hardware trust. The proposed approach is based on Register
Transfer Level (RTL) code certification within a formal logic
environment. The key novelty lies in the introduction of a new
semantic model for the Verilog Hardware Description Language
(HDL) in the Coq theorem-proving platform, which facilitates
tracking and proving secrecy labels of internal sensitive data
and, by extension, security properties of the design. Additional
framework enhancements include the ability to encapsulate sub-
module properties in the top module proof environment, thereby
strengthening the ability of Coq representation to reason on
hierarchically organized RTL code. We demonstrate the proposed
framework on a DES encryption core, wherein we employ it to
prevent secret information (e.g. round keys) leaking by hardware
Trojans inserted at the RTL description of the circuit.

I. INTRODUCTION

The increasingly globalized Integrated Circuit (IC) supply
chain has recently given rise to questions regarding chip trust-
worthiness. The fundamental concern is the potential inclusion
of malicious functionality, known as hardware Trojans, which
may cause erroneous behavior, steal sensitive information,
incapacitate, or even destroy a chip. The potential implications
of this problem have resulted in a large body of current
research on this topic, with the majority of the efforts focusing
on prevention and detection at the post-silicon stage [1]–[6],
assuming that the culprit will act at the manufacturing site. Of
equal importance, however, is protection against threats that
may exist earlier in the supply chain, and in particular in the
acquisition of third party intellectual property (IP) cores. While
most contemporary designs involve some form of third-party
IP, and while the barrier to entrance for contaminating an HDL
description is seemingly lower than for altering fabrication
masks, little effort has been expended towards pre-silicon
hardware Trojan prevention and detection [7]–[9].

Towards this end, in this work, we introduce an information
flow tracking methodology for data secrecy protection. The
proposed method borrows concepts from formal programming
languages, such as proof carrying code [10] and decentralized
labels [11], towards enhancing trustworthiness of third-party
IP cores. The proposed method operates in two stages: (i)
As shown in Figure 1, the IP vendor crafts proofs regarding
the secrecy properties of certain data, as agreed upon with
the consumer. These properties, written in a formal language,
along with the circuit, which is enhanced with secrecy tags and
is also expressed in the same formal language, are then passed
as a bundle to the consumer. (ii) As shown in Figure 2, the IP
consumer, uses a formal property checker to confirm that the
circuit complies to the agreed-upon security properties.

We note that, since the data secrecy properties are formally
proven, it is impossible for a hardware Trojan to violate a
secrecy property without making the proof fail. Hence, the
proposed method provides the IP consumer with a simple and
powerful mechanism for continuously checking an acquired
core throughout the design flow and ensuring that no hardware
Trojan is inserted, not only by the IP vendor, but also by
potential culprits within the IP consumer’s own organization.
Similarly, the proposed method provides the IP vendor with a
defense mechanism against potential liability claims.

The remainder of this paper is organized as follows: In
section II, we elaborate on the logistics of the proposed
proof-carrying-based information flow tracking scheme for
data secrecy protection. In section III, we provide details
about the proposed semantic model for expressing a circuit
in the Coq proof-assistant platform. Sensitivity properties
for information flow tracking and property reasoning across
hierarchical module instantiations are described in section
IV. An example implementation of the proposed protection
scheme and its effectiveness in detecting inserted hardware
Trojans on a DES core are presented in section V. Finally,
conclusions are drawn in section VI.

II. PROPOSED INFORMATION FLOW TRACKING SCHEME

The procedure for an IP vendor to specify data secrecy
properties and provide proofs for them, as shown in Figure
1, involves a number of steps. The IP vendor first designs
the circuit based on the functional specifications provided
by the IP consumer, in the form of HDL code. Utilizing a
formal semantic model and information flow tracking rules,

Fig. 1. Data secrecy property declaration and proof generation

978-1-4673-1074-1/12/$31.00 c© 2012 IEEE

252

Fig. 2. Data secrecy property verification

the IP vendor then converts the circuit from HDL code into
formal logic. In parallel, the IP vendor uses the property
formalization constraints to translate the data secrecy property
from English text into formal theorems. Note that these data
secrecy properties are agreed upon by both IP consumer and
IP vendor. These formal theorems cannot be proven in a stand-
alone fashion because parameters for theorems are missing at
this stage. Subsequently, the converted formal logic is loaded
into the formal theorems as parameters. The IP vendor, then,
writes the proof code for the parameterized formal security
theorems. Both the proofs and formal theorems are part of the
final deliverable handed to the IP consumer.

Upon receiving the hardware bundle which includes the
RTL code and proof codes for data secrecy property, as shown
in Figure 2, the IP consumer regenerates the formal logic of
the original circuit based on the same formal semantic model
and information flow tracking rules. The regenerated semantic
description is then combined with the provided proof codes
to pass through the formal property checker. A “PASS” result
means that the delivered IP core fulfills the agreed-upon data
secrecy property. However, a “FAIL” signal warns the user that
malicious circuit (or design errors) exist in the IP core, making
it violate the data secrecy properties. Any system that contain
IP cores which do not pass the property checker should then be
treated as untrusted. Within the context of hardware Trojans,
this scheme will enable detection of maliciously added code
that attempts to leak sensitive data.

The proposed information tracking scheme is conceptually
similar to the well-known software proof-carrying code (PCC)
methods [10], enhanced with labels [11]. With regards to the
complexity of this scheme, most of the burden falls on the IP
vendors, who have to specify the security properties in formal
logic and write the proofs. The IP consumer, however, only
has a trivial task, since the proof checking is fast, automated
and does not required extensive computational resources.

III. CIRCUIT SEMANTIC MODEL IN COQ

As depicted in Figure 2, the IP consumer uses a formal
property checker to decide whether the underlying HDL code

contains any hardware Trojans (or, for that matter, inadvertent
design errors) which may violate the expected data security
properties and leak sensitive internal information. Constructing
proof-checkers in native HDLs would be extremely compli-
cated, as these languages were not designed with such formal
tasks in mind. Instead, we opted to use Coq, a well-developed
proof-assistant platform [12], which is widely used for similar
property-checking purposes in the software community. There-
fore, we need a mechanism for expressing both the circuit and
the proof codes in the Coq proof-assistant language, in order
to use the formal property checker.

In order to convert HDL code to Coq-recognizable formal
logic, we develop two entities: (i) a structural semantic model
within the Coq platform, which allows us to represent hard-
ware circuitry, and (ii) a set of rules for converting HDL to
this Coq semantic model, as described below.

The structural semantic model is actually a new hardware
description language represented in Coq formal logic Using
this new HDL, we can express any IP core solely within the
semantic model of the Coq platform. An important feature of
this structural semantic model in Coq is that it can precisely
describe the structure of the circuit but has loose restrictions
on the functionality of the operators. In other words, the
architecture of the circuit is accurately described in the Coq
semantic model but designers (or proof writers) have flexibility
in how to define the functionality of the circuit. Furthermore,
as we will demonstrate later, this structural Coq semantic
model is quite effective in tracking information flow inside
the circuit, in support of the target objective of data secrecy
property checking.

The set of HDL-to-Coq conversion rules were developed
for the Verilog HDL currently, since we do not expect the
designers to write their IP cores in our semantic model. In-
stead, using these rules, we can automate the process, making
it transparent to them. Through this conversion, the Coq circuit
resembles structurally the Verilog-described circuit.

In the rest of this section, we first introduce the new
structural semantic model in a stepwise manner, starting with
the preliminary definition of signals and proceeding with more
complex expressions as well as the semantics of operators. We
then finish the section with the key aspects of the Verilog-to-
Coq conversion rules.

A. Signal Definition

Values of signals are defined in an inductive set with two
constructors, hi and lo, indicating high voltage level and low
voltage level, respectively. Instead of defining one-bit signals
and multi-bit buses separately, we unified both definitions
under the bus scope, i.e., a one-bit signal is treated as a one-
bit wide bus. The bus is then defined as a mapping of time,
specified in clock cycles and given as a natural number, onto
a bus_value, which is composed by a list of values. The
natural number t defines an important property in temporal
logic, namely that values of buses vary according to system
clock cycles. We also define a function to obtain the width of
the bus, bus_length.

Inductive value := lo | hi.

253

Definition bus_value := list value.
Definition bus := nat -> bus_value.
Definition bus_length (b : bus) :=

Fun t : nat => length (b t).

B. Signal Operations

We construct bus handling methods in the semantic model.
These methods include logic operations such as and, or,
xor, etc., as well as bus comparisons such as checking for
bus equality, bus_eq, less-than comparison, bus_lt, etc.
Considering that in RTL code signals are often compared with
0 to decide the direction of branches in if...else...
statements, we add a special function to compare the bus value
with 0, bus_eq_0.

Fixpoint bv_bit_and (a b : bus_value)
{struct a} : bus_value :=

match a with
| nil => nil
| la :: a’ => match b with

| nil => nil
| lb :: b’ => (and la lb) ::
(bv_bit_and a’ b’)

end
end.

Definition bus_bit_and (a b : bus) : bus :=
fun t:nat => bv_bit_and (a t) (b t).

Fixpoint bv_eq_0 (a : bus_value)
{struct a} : value :=

match a with
| hi :: lt => lo
| lo :: lt => bv_eq_0 lt
| nil => hi
end.

Definition bus_eq_0 (a : bus) (t : nat) : value :=
bv_eq_0 (a t).

C. Bus Slicing

It is often the case that, in a circuit, operations are performed
on certain bits of the bus but not the entire bus. Most hardware
description languages therefore provide quite flexible syntax
to define bus length and bus bit-sequence. In order to support
similar flexibility in our Coq semantic model, we developed
two bus-slicing operations to shuffle data bits from lower bit
positions to higher bit positions and vice-versa. Bit selection
notations are also proposed to simplify code writing.

Definition sliceA (b : bus) (p1 p2 : nat) : bus :=
fun t : nat => firstn (p2-p1+1) (skipn (p1-1) b).
Definition sliceD (b : bus) (p1 p2 : nat) : bus :=
fun t : nat =>

rev (firstn (p1-p2+1) (skipn p2 (rev b)).

Notation " b [m , n] " := (sliceD b m n)
(at level 50, left associativity).

Notation " b @ [m , n] " := (sliceA b m n)
(at level 50, left associativity).

D. Expressions

On top of the signal definitions and operation rules, we
build expressions to represent more complicated circuit logic.

An expression is defined as an inductive set with operators to
construct new expressions or combine expressions together.

Plenty of operators are supported, varying from basic logic
operations (AND, OR, etc.) to sophisticated data manipulation
(S-box mapping, permutation, etc.). The expression definition
shown below is an excerpt from the complete expression
definition, wherein operators have been chosen with particular
attention to common tasks performed in cryptographic IP
cores, since it is highly likely that data secrecy properties
will have to be proven for such designs. A constant value
list and a bus can be directly converted to expressions using
the econv and econb constructors, respectively. The eand,
eor and exor constructors connect two expressions to form
a new expression, by performing logical AND, OR and XOR
operations, respectively. The perm and sbox constructors are
used to indicate permutation and S-box mapping operations. In
this structural semantic model, it is unnecessary to specify how
the permutation and/or S-box mapping is actually performed.
These structural constructors liberate the proof writers from
tedious functional conversion, which may be unnecessary for
data secrecy property checking.

Inductive expr :=
| econv : bus_value -> expr
| econb : bus -> expr
| eand : expr -> expr -> expr
| eor : expr -> expr -> expr
| exor : expr -> expr -> expr
| enot : expr -> expr
| cond : expr -> expr -> expr -> expr
| perm : expr -> expr
| sbox : bus -> expr

...

Evaluation of expressions is recursively defined to calculate
the value of an expression a specified time (denoted by t
parameter) and return data of type bus_value, a list of
values whose length depends on the width of the underlying
bus. A close look at the eval function support our claim
that, some expressions, such as perm, only denote that a
permutation operation will be performed on the underlying
bus but do not specify the exact nature of the permutation.
Of course, other expressions, such as eand which performs a
logical AND on two sub-expressions, result in a case where
both functionality and structure are fully specified.

Fixpoint eval (e : expr) (t : nat)
{struct e} : bus_value :=
match e with
| econv v => v
| econb b => b t
| eand ex1 ex2 =>
bv_bit_and (eval ex1 t) (eval ex2 t)

| eor ex1 ex2 =>
bv_bit_or (eval ex1 t) (eval ex2 t)

| enot ex =>
bv_bit_not (eval ex t)

| cond cex ex1 ex2 =>
match (bv_eq_0 (eval cex t)) with
| hi => eval ex1 t
| lo => eval ex2 t end

| perm ex => eval ex
| sbox b => b t

...

254

E. Coq Semantic Model

The definition of signals, expressions and their semantic
model paves the way to finally represent the semantic model of
a circuit in Coq. We try to make the new semantic model user-
friendly when we choose code constructors. The constructor
outb is used to denote output signals of the module. Similarly,
inb means input signals; wireb represents internal wire
signals; and regb denotes the internal registers (note that,
similar to other HDLs, the reg type does not necessarily result
in actual registers in the synthesized model). Two assignment
constructors are also defined, namely assign_*, which
works for combinational logic, and nonblock_assign_*,
which is appropriate for non-blocking assignment in sequential
logic. An extra notation is added to pile the code through the
’;’ symbol. The selection of the ’;’ mark is consistent with the
syntax of other HDLs.

Inductive code :=
| outb : bus -> code
| inb : bus -> code
| wireb : bus -> code
| regb : bus -> code
| assign_ex : bus -> expr -> code
| assign_b : bus -> bus -> code
| assign_case3 : bus -> expr -> code
| nonblock_assign_ex : bus -> expr -> code
| nonblock_assign_b : bus -> bus -> code
| codepile : code -> code -> code.

Notation " c1 ; c2 " := (codepile c1 c2)
(at level 50, left associativity).

F. Verilog-Coq Conversion Rules

Since the Coq semantic model we developed has similar
syntax with Verilog code, the fundamental Verilog-to-Coq
conversion rule which we need to obey is to keep the original
code and destination code structurally the same. This forms
the basis for the Verilog-to-Coq conversion methodology that
we developed. For example, a combinational assign logic is
mapped to a assign_ex statement and module instantiation
is mapped to module_inst statement as shown below.

Verilog code:
assign Lout = (roundSel == 0) ? IP[33:64] : R;

Converted Coq formal logic:
assign_ex Lout (cond (eq (econb roundSel)

(econv (lo::lo::lo::lo::nil)))
(econb (IP @ [33, 64])) (econb R));

Verilog code:
crp u0 (.P(out), .R(Lout), .K_sub(K_sub));

Converted Coq formal logic:
module_inst2in out Lout K_sub;

IV. MODULE INSTANTIATION AND INFORMATION FLOW

A. Information Flow

In itself, the new semantic model can still not achieve
the goal of protecting internal sensitive signals and designing
trusted IP cores, since it is simply an alternative HDL for
representing the circuit structure. Information leaking hard-
ware Trojans can still use signal bypassing strategies, which

propagate internal sensitive data to primary outputs [13] or
disseminate it through Trojan side channels [14], with lit-
tle modification in the original circuit. However, the circuit
description is now in a language that lends itself to formal
reasoning. Therefore, by adding the right elements (i.e. tags)
and logic for formally reasoning on these elements, we can
now support our cause.

Towards enabling the new semantic model to facilitate
tracking of internal sensitive data and proving of secrecy
properties on this data, we incorporate an additional property,
namely sensitivity, to circuit signals. This property is akin
to the existing value property and it allows us to formally
examine and prove signal integrity (from a security point of
view) within the entire design. More specifically, we explicitly
define signal sensitivity on top of the existing semantic model,
in order to support information flow tracking. Having chosen
the Coq platform for our semantic model comes in handy,
since it is relatively straightforward to enhance the Coq formal
logic to support information flow tracking. The only significant
change is that we need to extend the bus definition so that
it will return a value*sensitivity pair at a specified
time t instead of just a value. Sensitivity is defined as an
inductive set with two constructors, secure and normal,
indicating whether the signals are sensitive and need protection
or not1. A bus with a secure tag is, then, not allowed to
propagated to a primary output or a Trojan side channel.

Inductive sensitivity := secure | normal.
Definition bus := nat ->
(bus_value * sensitivity).

Now that each bus has a sensitivity tag, we need to
define the propagation rules (i.e. tag algebra) for those tags
as the corresponding signals travel from inputs through bus
operations to outputs. Three operation rules are defined.

Definition uoptag
(a : sensitivity) : sensitivity := a.

Definition boptag
(a b : sensitivity) : sensitivity :=
match a with
| secure => secure
| normal => match b with

| secure => secure
| normal => normal
end

end.
Definition rmtag
(a : sensitivity) : sensitivity := normal.

The uoptag function deals with the case where a bus is
the operand of a unary operator. In this case, as the definition
indicates, the unary operator reserves the sensitivity tag of the
bus. The definition for binary operators, boptag, is similar
to the OR logic, where the output signal tag is secure as
long as one of the input signals is secure. The only way
to switch the secure tag back to a normal tag is through
the rmtag function. As we will see shortly in the DES case-
study, permutation and module instantiation are the only legal

1More complex multi-level sensitivity schemes can also be defined, though
the corresponding operator algebra will also become more complex.

255

operations which are allowed to call the rmtag function to
remove secure tags. It is important to restrict the ability of
removing the secure tag to a small number of well-controlled
operators, in order to prevent leakage of internal sensitive data
by “declassification”.

B. Module Instantiation

Modern circuits are typically designed hierarchically to
better manage the integration of IP cores into large systems
and SoC designs. The hierarchical architecture simplifies test-
ing of circuit designs but, in our case, poses an additional
challenge on how to transfer security properties from lower
level modules to higher level modules so that proofs can
be constructed across module instantiation interfaces. In our
scheme, since the security property we need to prove for
modules at different levels remains the same, i.e. data secrecy,
we follow a bottom-up property transferring solution to solve
this problem. The procedure to perform this bottom-up security
checking in a hierarchical system is listed below:

1) Check the data secrecy protection property of modules
at the bottom level.

2) Move to modules in higher levels. Redefine the sensi-
tivity tags of signals at the interface between the current
module and modules at the lower levels. Check the
security of the module.

3) Repeat step (2) until the top level module is reached.
The DES core example in the next section demonstrates
the effectiveness of this method to ensure the data security
property across levels in a hierarchical designs.

V. DES EXAMPLE

In order to demonstrate the capability of the semantic model
to support information flow tracking and module instanti-
ation towards protecting internal sensitive information and
preventing leakage of secret information (e.g. encryption key,
plaintext) by hardware Trojans, we employ a DES core written
in Verilog [15]. In this example, we show how the Verilog
code is converted into Coq formal logic, how the information
flow tags are added to the Coq DES circuit description, how
the data secrecy property that we are interested in proving
is constructed and, finally, how the proof checker detects the
presence of hardware Trojans.

A. DES Circuit in Coq

The architecture of the DES core is shown in Figure
3, wherein the top module, des.v, instantiates two sub-
modules, the Feistel function, crp.v and the key generator,
key_sel.v, to perform round encryption/decryption and
round key generation, respectively.

Based on the Verilog-to-Coq conversion rules and the Coq
semantic model, all three modules (des.v, crp.v and
key_sel.v) are converted into their Coq equivalent. Part
of the converted Coq code for des.v is shown below.

Definition des : code :=
outb desOut;
inb desIn;
inb key;

Fig. 3. Architecture of DES circuit

inb decrypt;
inb roundSel;
inb clk;
wireb K_sub;

...
assign_ex Lout (cond (eq (econb roundSel)
(econv (lo::lo::lo::lo::nil)))
(econb (IP @ [33, 64])) (econb R));

assign_ex Xin (cond (eq (econb roundSel)
(econv (lo::lo::lo::lo::nil)))
(econb (IP @ [1, 32])) (econb L));

assign_ex Rout (econb (bus_bit_xor Xin out));
assign_ex FP (econb (bus_app Rout Lout));
module_inst2in out Lout K_sub;
nonblock_assign_ex L (econb Lout);

...

B. Property Proof

For each module, we need to denote the information tags
and prove the data secrecy property. Due to limited space,
we only show the process for the top module, des.v, which
also demonstrates the process of module instantiation. Similar
steps are followed hierarchically for the other two modules.

For the des.v module, among all input, output and internal
signals, the input key (key), input plaintext (desIn) and
internal generated round keys (K_sub) require protection.
As shown in Figure 3, we added a {secure} tag on these
signals. Reflected in Coq formal logic, three axioms are added
to reflect the semantics that the key, desIn and K_sub have
secure sensitivity tags in all clock cycles. The separation of
signal property denotation axioms and circuit code constitutes
a key characteristic of the Coq platform. These axioms act
as preconditions for all security properties extracted from the
Coq circuit representation.

Axiom secret_key : forall (t : nat),
bus_sen key t = secure.

Axiom secret_desIn : forall (t : nat),
bus_sen desIn t = secure.

Axiom secret_K_sub : forall (t : nat),
bus_sen K_sub t = secure.

With both the preconditions and the DES circuit itself
available in Coq representation, the next step is to construct the
data secrecy property that we wish to prove and express it also
in Coq. Our requirement that “no internal sensitive information
is leaked through primary output or Trojan side channels” is
formalized into following the no_leaking_des theorem in
Coq formal logic.

256

Fig. 4. Architecture of Trojan-infested DES circuit

Theorem no_leaking_des : forall (t : nat),
chk_code_sen des t = normal.

If the Coq DES circuit and the preconditions can prove the
no_leaking_des theorem, we can then declare that the
delivered HDL code is trusted in protecting data secrecy. Not
surprisingly, the theorem is proven (details of writing the proof
in Coq are omitted due to space limitations). From a top-level
perspective, this implies that the {normal} tag under the
desOut output denotes no sensitive data is leaked in Figure
3. Also, from an IP acquisition perspective, this implies that a
customer can be given the code for this DES core, along with
the proof, and independently verify them using a Coq property
checker, through the flow depicted in Figure 2.

C. Hardware Trojan Detection

In order to demonstrate the ability of the proposed infor-
mation flow tracking scheme to detect hardware Trojans, we
insert a hardware Trojan at the RT-level description of the DES
core in our example. When triggered, this Trojan bypasses the
internal round key directly to the primary output. Figure 4
shows the impact of the inserted Trojan on the information
flow. Previous work in [13] has already demonstrated that if the
Trojan is only triggered by rare everts, it is difficult to detect
its existence. Yet in the proposed scheme, Trojan detection
is independent of the triggering condition, since it happens
through a formal theorem proving approach, rather than actual
application of stimuli to the circuit. The converted Coq formal
logic from the Trojan-infested HDL code, combined with
the preconditions, lead us to the conclusion that the output
desOut is of secure tag (as shown in Figure 4). Reflected
in Coq formal logic, the no_leaking_des theorem cannot
be proven, an evidence that the inserted Trojan is detected.

VI. CONCLUSION

While the majority of contemporary research in hardware
Trojan prevention and detection focuses on post-silicon ac-
tions, the problem of untrusted, potentially Trojan-infested
RT-Level code is becoming of equal importance. Indeed, the
extended use of third party IP has intensified such concerns,
necessitating similar pre-silicon hardware Trojan prevention
and detection methods. To this end, we introduced a new
information flow tracking scheme based on the principles of
proof-carrying code. A new semantic model for expressing an

RTL circuit description in the theorem-proving language Coq
through a set of Verilog-to-Coq conversion rules, provides a
formal framework for reasoning on data secrecy properties
and, thereby, increasing hardware trustworthiness. Using a
genuine and a Trojan-infested version of a DES circuit, we
demonstrated that the proposed information flow tracking
method can definitively prove or disprove security proper-
ties of IP cores and, thereby, detect hardware Trojans that
violate these properties. Future expansions of this framework
will focus on enhancing the Coq semantic model to support
functional-level code conversion, as well as on automated
security property extraction.

REFERENCES

[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,
“Trojan detection using IC fingerprinting,” in IEEE Symposium
on Security and Privacy, 2007, pp. 296–310.

[2] Y. Jin and Y. Makris, “Hardware Trojan detection using
path delay fingerprint,” in IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008, pp. 51–57.

[3] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic, “Power
supply signal calibration techniques for improving detection
resolution to hardware Trojans,” in IEEE/ACM International
Conference on Computer-Aided Design, 2008, pp. 632–639.

[4] R. Rad, J. Plusquellic, and M. Tehranipoor, “Sensitivity analysis
to hardware Trojans using power supply transient signals,” in
IEEE International Workshop on Hardware-Oriented Security
and Trust, 2008, pp. 3–7.

[5] Y. Jin and Y. Makris, “Hardware Trojans in wireless crypto-
graphic ICs,” IEEE Design and Test of Computers, vol. 27, pp.
26–35, 2010.

[6] M. Tehranipoor and F. Koushanfar, “A survey of hardware
Trojan taxonomy and detection,” Design Test of Computers,
IEEE, vol. 27, pp. 10–25, 2010.

[7] S. Drzevitzky, U. Kastens, and M. Platzner, “Proof-carrying
hardware: Towards runtime verification of reconfigurable mod-
ules,” in International Conference on Reconfigurable Computing
and FPGAs, 2009, pp. 189–194.

[8] M. Banga and M.S. Hsiao, “Trusted RTL: Trojan detection
methodology in pre-silicon designs,” in Hardware-Oriented
Security and Trust (HOST), 2010 IEEE International Symposium
on, june 2010, pp. 56 –59.

[9] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware
intellectual property: A pathway to trusted module acquisition,”
IEEE Transactions on Information Forensics and Security, 2012,
(to appear).

[10] G. C. Necula, “Proof-carrying code,” in POPL ’97: Proceedings
of the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 1997, pp. 106–119.

[11] A. C. Myers and B. Liskov, “Protecting privacy using the
decentralized label model,” ACM Transactions on Software
Engineering and Methodology, vol. 9, 2000.

[12] INRIA, “The coq proof assistant,” September 2010,
http://coq.inria.fr/.

[13] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware
Trojan design and implementation,” in IEEE International
Workshop on Hardware-Oriented Security and Trust, 2009, pp.
50–57.

[14] L. Lin, M. Kasper, T. Guneysu, C. Paar, and W. Burleson,
“Trojan side-channels: Lightweight hardware Trojans through
side-channel engineering,” in Cryptographic Hardware and
Embedded Systems, vol. 5747 of LNCS, pp. 382–395. Springer-
Verlag Berlin, 2009.

[15] http://www.opencores.org/projects.cgi/web/des/overview.

257

