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Abstract—We investigate the utility of correlations between e-
test and probe test measurements in predicting yield. Specifically,
we first examine whether statistical methods can accurately
predict parametric probe test yield as a function of e-test
measurements within the same fab. Then, we investigate whether
the e-test profile of a destination fab, in conjunction with the e-
test and probe test profiles of a source fab, suffice for accurate
yield prognosis during fab-to-fab product migration. Results
using an industrial dataset of ∼3.5M devices from a 65nm Texas
Instruments RF transceiver design fabricated in two different
fabs reveal that (i) within-fab yield prediction error is in the
range of a few tenths of a percentile point, and (ii) fab-to-fab
yield prediction error is in the range of half a percentile point.

I. INTRODUCTION

The rapidly growing and dynamically changing consumer

electronics market introduces interesting challenges to pro-

duction planning of semiconductor manufacturing companies,

calling for agility and flexibility in order to efficiently respond

to fluctuating demand. Contingency plans for dealing with

catastrophic events, such as earthquakes, floods, and hurri-

canes, which have severely hampered the market in the past, as

well as political or sheer financial reasons, often place similar

constraints in production planning as well. Migrating a product

from one fab to another, however, is not a trivial endeavor.

Different fabs, implementing the same technology node and

even employing identical equipment and software suites, are

bound to exhibit variations in the parametric profile of the

silicon they produce, and by extension, the yield of a device

fabricated therein. Accurate yield prognosis, however, is an

indispensable piece of information during device migration

and production planning.

Predicting parametric yield for a design produced by a

specific fab is not a new problem, with solutions varying

from pure simulation-based to silicon measurement-driven.

Traditionally, Monte Carlo based approaches have been used

to generate a large number of random samples based on ex-

pected process variations, in order to estimate the distribution

of each performance of interest [1]. Alternatively, modeling

techniques, which approximate a performance of interest as a

linear or non-linear function of device-level parameters have

also been employed. Subsequently, the distribution of a desired

performance is estimated by numerical methods [2], [3]. Such

simulation-based methods, however, are of limited accuracy.

Along another direction, the authors of [4] introduced the use

of Bayesian model fusion for yield estimation, wherein pre-

silicon simulations are reinforced with a small set of post-

silicon measurements to enhance model accuracy. Similarly, in

[5], high volume manufacturing yield of a product is estimated

Fig. 1: Yield Prediction during fab-to-fab migration.

through spatio-temporal wafer correlation models learned from

early silicon wafers. Such silicon measurement-based methods,

however, assume access to probe measurements from a tan-

gible number of wafers of the device, produced in the fab of

interest, in order to estimate parametric production yield. Yet

in the context of fab-to-fab product migration, this information

is not available since the device has yet to be produced in the

target fab.

To address this problem, in this work we develop a yield

prognosis method which does not require target fab measure-

ments from the device to be migrated. Instead, as shown in

Figure 1, it relies on e-test and probe test measurements from

the source fab, where the device is currently produced, as well

as the e-test profile of the target fab, which can be obtained

from other devices produced therein, as e-tests are typically

common across devices in the same technology node. Toward

this end, in Section II we first discuss a regression-based

solution to the problem of correlating e-test measurements

to parametric probe test yield within a single fab. Then, in

Section III, we introduce three methods for extending this

capability to the fab-to-fab product migration scenario, namely

model migration, importance sampling and predictor calibra-
tion. Experimental results demonstrating the effectiveness of

parametric yield prediction based on e-test measurements on

actual production data for both the within-fab and the fab-

to-fab migration scenarios are presented in Section IV and

conclusions are drawn in Section V.

II. WITHIN-FAB CORRELATION

Before we address the problem of predicting parametric

probe test yield from e-tests during fab-to-fab product migra-

tion, we discuss the simpler version of doing so within the

same fab. Meaningful correlations among measurements from

various stages of semiconductor manufacturing are known to
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Fig. 2: E-test/yield correlation model.

exist and have been utilized in several tasks, such as test

cost/time reduction and yield improvement in the past. In

one such approach, described in [6], the authors proposed

a statistical method for predicting probe test outcomes from

e-test data of a wafer. This method employed a genetic

algorithm-based approach to select a key subset of all e-test

parameters and, then, build a multivariate nonlinear correlation

model between selected e-tests and probe test outcomes.

The identified correlations were iteratively refined through

designer feedback, with the main objective of providing useful

information for process health monitoring, rather than reducing

test cost/time. Indeed, while the accuracy of these e-test to

probe test prediction models is high, it would not suffice for

omitting probe test of individual dies with acceptable test

error. Nevertheless, if one is interested in predicting parametric

probe test yield across an entire wafer from its e-tests, as is

the case in our problem, these models are very accurate.

Figure 2 depicts how parametric probe test yield can be

predicted through e-test measurements of wafers in a fab. First,

for a training set of wafers, both e-tests and parametric probe

test measurements are obtained. The device specifications

are then used to compute parametric yield for each probe

test across the wafer. Using the e-tests and the parametric

probe test yield, a correlation model is trained. Finally, for

a new wafer produced by this fab, its e-test measurements

can be provided to the trained correlation model in order to

predict parametric yield. The key component in this scheme

is the construction of the correlation model, whereby the

dependent variables (parametric probe test yield) are expressed

as functions of predictors (e-test measurements).

Several methods exist in the literature for multivariate

regression such as Multivariate Adaptive Regression Splines
(MARS), Least-Angle Regression Splines (LARS), Projection
Pursuit Regression, Multi-Layer Perceptrons, and Radial Basis
Function Networks [7]. Among them, in this work, we use

MARS [8], which was also used in [6] and several other test

cost reduction methods in the past [9].

III. YIELD PROGNOSIS IN FAB-TO-FAB MIGRATION

We now turn our attention back to the fab-to-fab migration

problem, wherein we seek a prognosis of the parametric yield

of a product migrating from a source fab to a target fab.

This prognosis may be based on the e-test and the parametric

probe test of the source fab, where the device is currently

produced so ample data is available. In addition, it may also

be based on the e-test profile of the target fab, which can be

obtained from other devices produced therein, as most e-tests

are typically shared across designs on the same technology

node. The probe test profile for the target fab, however, is not

available, since the device has yet to be produced therein. Our

objective is to statistically predict parametric probe test yield

in the target fab based on the above data. After introducing

notation and formulating the problem, we describe three such

methods, namely model migration, importance sampling, and

predictor calibration.

A. Notation and Problem Formulation

Given a set of e-test measurements, eTS, and probe test

measurements, PTS, from the source fab, we can use the

device specification limits to compute the parametric probe

test yield vector for every wafer in our dataset. Each wafer

can, then, be represented by:

waferiS = (eTi
S,y

i
S) (1)

where eTi
S = [eti1S , eti2S , ..., etimS ] is the m−dimensional

vector of e-test measurements for wafer i and yi
S =

[yi1S , yi2S , ..., yikS ] is the k−dimensional parametric yield vector

for the probe test measurements of wafer i. Let us also denote

by pS(eTS) the density function of e-tests over nS wafers of

the source fab. Similarly, given a set of e-test measurements,

eTT, from the target fab, with their density function over nT

wafers denoted by pT(eTT), a wafer can be represented by:

waferjT = [eTj
T] = [etj1T , etj2T , ..., etjmT ] (2)

Our objective is to predict the k−dimensional parametric yield

vector for the probe tests of wafer j, ŷj
T = [ŷj1T , ŷj2T , ..., ŷjkT ],

for each of the nT wafers of the target fab.

B. Model Migration

A straightforward approach is to use the method discussed

in Section II to express parametric yield in the source fab as a

function of its e-tests, YS=fS(eTS). Then, the trained regres-

sion function can be applied directly to the e-tests of the target

fab, in order to predict its parametric yield, YT=fS(eTT).
Model migration success relies on two assumptions:

1. Homogeneous distribution between training and testing

data sets, i.e. e-tests in the source and target fabs must

come from the same distribution, pS(eTS) = pT(eTT).
2. Identical conditional distribution of yield values for

training and testing data sets, pS(YS | eTi
S) =

pT(YT | eTj
T) ⇒ eTi

S ≈ eTj
T. In other words, if

a wafer from the source fab and a wafer from the target

fab have the same yield, they must also have similar

e-test vectors.

As these assumptions do not necessarily hold true in a

semiconductor manufacturing context, the accuracy of model

migration is expected to be limited.

C. Importance Sampling

Another approach, which revokes the homogeneity assump-

tion but retains the identical conditional distribution assump-

tion discussed above, is importance sampling. In order to build

a model using the training data, which will retain its accuracy
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Fig. 3: Instance weighting example.

when used on the testing data, importance sampling biases

the selection of the instances from which the model is built.

Specifically, preference is given to the most relevant region

of the training distribution (source fab e-tests), i.e. the region

which overlaps the most with the testing distribution (target

fab e-tests). To achieve this, higher weights are assigned to

samples from the relevant region, hence the name importance

sampling [10]. This method has been successful in various

real-world applications [11]–[14].

In our context, we seek to assign weights (importances)

to the instances of the source fab e-test distribution, favoring

those which are frequently encountered in the target fab e-test

distribution with higher weights and penalizing those that are

rarely encountered with lower weights. To achieve this, we

compute the weight of each instance in the source distribution

as the ratio of the target density over the source density.

Therefore, we first estimate the density of e-tests for the source

and target fabs separately, and then we compute the weight

vector through the following equation:

W =
pT(eTS)

pS(eTS)
(3)

Figure 3 shows an example of source and target fab densities

for one e-test, along with the instance weights calculated using

Equation 3. The dashed and solid lines represent the density

of the training and testing data, while the dotted graph is the

weight corresponding to each training instance.

To apply importance sampling to the fab-to-fab migra-

tion problem, we first allocate the instance weights for the

source fab. Next, we train a regression model to express

parametric yield in the source fab as a function of its e-tests,

YS=fwS(eTS,W), but elements from the training set are

selected with probability commensurate with their assigned

weights, instead of equal probability, as in model migration.

The trained regression function is, then, applied directly to

the e-tests of the target fab to predict its parametric yield,

YT=fwS(eTT).
Importance sampling is expected to perform better than

model migration, as it does not rely on the homogeneity

assumption. Nevertheless, it still assumes identical conditional

distributions, hence there remains room for improvement.

D. Predictor Calibration

A third approach, which does not rely on any of these

two assumptions, is predictor calibration. In this method, the

distribution of e-tests in the target fab (i.e. predictors) is

calibrated based on the distribution of e-tests in the source

fab, êTT = h(eTT, eTS), prior to being used for predicting

parametric probe test yield in the target fab. A simple way of

achieving this would be mean calibration, which removes the

mean shift, Δ(μ), from each instance of target distribution:

êT
i

T = eTi
T −Δ(μ), Δ(μ) = μ(eTT )− μ(eTS) (4)

However, in order to achieve better precision, other parameters

of the distribution, such as variance, skewness and kurtosis,

also need to be calibrated. To accomplish this, we employ

a two-step procedure. First, in the cumulative distribution

function (CDF) of the target fab, we find the cumulative prob-

ability associated with each sample in the target distribution,

xi = FT(eT
i
T). Then, using the inverse CDF of the source

fab, we determine the e-test value associated with cumulative

probability xi, êT
i

T = F−1
S (xi), where F−1

S is the inverse

CDF of the source fab distribution. This procedure is applied

to all nT instances (i.e. wafers) of the target fab distribution.

The predictor calibration algorithm is summarized below:

êTT = �
for eT i

T ∈ eTT do
xi ← FT(eT

i
T)

êT
i

T ← F−1
S (xi)

êTT ← êTT ∪ êT
i

T

end for
Using this method, the mapping function is defined as:

êTT = h(eTT) = F−1
S (FT(eTT)) (5)

In order to utilize predictor calibration in fab-to-fab migration,

a regression function is first trained to express parametric yield

in the source fab as a function of its e-tests, YS=fS(eTS).
Then, the prediction calibration algorithm maps the distribu-

tion of e-tests in the target fab into the distribution of e-tests

in the source fab, êTT = h(eTT). Eventually, the trained re-

gression model is applied to the calibrated e-tests of the target

fab, in order to predict parametric yield, YT = fS(êTT).
Since predictor calibration does not make any of the two

assumptions stated earlier, it is expected to outperform both

model migration and importance sampling.

IV. EXPERIMENTAL RESULTS

In order to experimentally evaluate the effectiveness of the

proposed yield prognosis methods, we use actual production

data from a 65nm analog/RF device currently in high volume

manufacturing (HVM) production by Texas Instruments1. This

data, which is depicted in Figure 4, comprises devices from

two geographically dispersed fabs wherein this device is

fabricated, which we will refer to as fab A and fab B. The

dataset for fab A includes 54 e-test and 168 parametric probe

test measurements from a total of 1800 wafers, each of which

has 9 e-test measurement sites and approximately 1500 die

per wafer. The dataset for fab B includes the same e-test and

parametric probe test measurements from a total of 500 wafers,

1Details regarding the device cannot be released due to an NDA under
which this data has been provided to us.

!

!



Fig. 4: Experimental dataset.

with the only difference being that e-tests are obtained on only

5 instead of 9 sites. These two datasets were obtained from the

two fabs at approximately the same time period. Along with

the data, we are also provided with the specification limits for

each of the 168 parametric probe tests, hence we can compute

the yield of each performance on every wafer for each of the

two fabs. Additionally, for each of the 54 e-test measurements,

we compute the mean and the standard deviation across the 9

sites on wafers produced in fab A (5 sites on wafers produced

in fab B), hence the e-test signature of each wafer consists of

108 parameters. Using this dataset, we seek to:

• Quantify the accuracy of statistically predicting paramet-

ric yield from e-test measurements within a single fab.

• Quantify the accuracy of the described prognosis methods

in statistically predicting yield during fab-to-fab product

migration based on e-test and probe test profiles of the

source fab and only an e-test profile of the target fab2.

In both cases, we use two metrics to quantify prediction

accuracy. The first metric is the average absolute difference,

δi, between predicted and actual yield for the i-th probe test:

δi =
1

nT

nT∑
j=1

|ŷij − yij| (6)

where nT is the number of wafers for which the prediction

is applied, while ŷij and yij are the predicted and the actual

yield of the i-th probe test on the j-th wafer, respectively.
The second metric, εi, normalizes the average absolute

difference to the yield range:

εi =
1

nT

nT∑
j=1

|ŷij − yij|
max(yi)−min(yi)

(7)

where max(yi) and min(yi) are the highest and lowest yield

values, respectively, of the i-th probe test across all wafers.

Expressing prediction error as a percentage of this range is

important towards gaging its significance.

2We note that the e-test profile of the target fab should be obtained from a
different product fabricated therein. Since we only have data from one device,
however, we use its e-test profile as a proxy.
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Fig. 5: Within-fab yield prediction error.

A. Within-Fab Yield Prediction

In order to quantify the accuracy of statistically predicting

parametric yield from e-test measurements within a single fab,

we use 90% of the available wafers from a fab as the training

set and the remaining 10% as the test set. Using the 108 e-

test features and the 168 yield values reflecting each wafer

in our training set, we train a separate regression model (i.e.

MARS) for each of the 168 probe tests. The trained regression

models are then applied to the 108 e-test features of each

wafer in the test set, in order to predict the yield of each of

the 168 probe tests across this wafer. The predicted results are,

then, compared to the actual values, which are available in the

dataset, in order to estimate prediction accuracy. To establish

statistical significance, we apply a 10-fold cross validation

approach where results are averaged over 10 repetitions, each

time randomly splitting the dataset into training and test sets.

Figures 5(a) and 5(b) present the results for the datasets of

fab A and fab B, respectively, using the first metric, δi, defined

in Equation 6. The horizontal axis shows the 168 probe tests,

sorted in increasing prediction error, while the vertical axis

shows the corresponding average absolute difference between

the predicted and actual yield3. As may be observed, this

difference is in the order of a few tenths of a percentage point,

corroborating that parametric probe test yield can be predicted

very accurately from the e-test measurements of a wafer.

Figures 6(a) and 6(b) demonstrate the same results, this time

using the second metric, εi, defined in Equation 7. In each

histogram, the horizontal axis is the prediction error, while

the vertical axis shows the percentage of probe tests that are

predicted within a given error range. For example, the first

bar shows the percentage of probe test measurements whose

normalized average prediction error is below 2%, with the

corresponding value being 60% and 21% for fab A and fab B,

respectively. As may be observed, the yield of the vast majority

of probe tests can be predicted using e-test measurements with

an error which is well below 10% of their yield range.

3We note that since our test data is Continue on Fail (COF) and a device
might fail multiple probe tests, the sum of the yield prediction errors over the
168 probe tests does not reflect the overall yield prediction error.
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Fig. 6: Normalized within-fab yield prediction error.

TABLE I: Average within-fab yield prediction error.

Metric Fab A Fab B

δi 0.23% 0.16%

εi 3.2% 5.6%

These results are summarized in Table I, where the average

absolute prediction error is calculated at 0.23% for fab A and

at 0.16% for fab B. Normalized to the yield range of each

probe test, the results are 3.2% for fab A and 5.6% for fab B.

B. Yield Prognosis for Fab-to-Fab Migration

In order to quantify the accuracy of the described prognosis

methods in predicting yield during fab-to-fab product migra-

tion, we performed the following experiment, first using fab

A as the source and fab B as the target, and then reversing the

roles: using the 108 e-test features and the 168 yield values

from every wafer in the dataset of the source fab, as well as

the 108 e-test features from every wafer in the dataset of the

target fab, we apply the three methods described in Section

III to predict the yield for the 168 probe tests in the wafers of

the target fab. The predicted values are, then, compared to the

actual yield values, which are available in our dataset, in order

to estimate prediction accuracy. As a baseline for prediction

accuracy, we use the within-fab yield prediction results for the

target fab, which were presented in the previous subsection.

Figures 7(a) and 7(b) present the results for product migra-

tion from fab A to fab B and vice-versa, respectively, for each

of the three methods of Section III, using the first metric, δi,
defined in Equation 6. The within-fab baseline results are also

shown as a point of reference. The horizontal axis shows the

168 probe tests, sorted in increasing prediction error, while

the vertical axis shows the corresponding average absolute

difference between the predicted and actual yield for each

method. We note that, in this case, the vertical axis is in

logarithmic scale and in the model migration plot connecting

lines are omitted in order to enhance figure readability.

As may be observed, model migration, wherein the correla-

tion models learned on the source fab are directly applied to

the e-tests of the target fab, results in prediction error in the

range of 10% and 5% for the two experiments, respectively.

This is expected, since this approach assumes homogeneous

e-test distributions and identical conditional yield distributions

in the two fabs, something that is typically not the case. Impor-
tance sampling, on the other hand, reduces the yield prediction

error to within a couple of percentage points. Evidently, the

weighting policy used therein is effective in modeling the
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Fig. 7: Absolute fab-to-fab yield prediction error.

difference in the marginal distribution of e-tests in the source

and target fabs. Finally, predictor calibration outperforms the

other two methods due to the accurate mapping of the target

into the source distribution. Indeed, the yield prediction error

drops to below half of a percentage point and is very close to

the baseline achieved by within-fab correlation models.

Figures 8(a) and 8(b) demonstrate the results of the same

experiments, this time using the second metric, εi, defined

in Equation 7. In each histogram, the horizontal axis is the

prediction error, while the vertical axis shows the percentage

of probe tests that are predicted within a given error range.

Separate histograms are shown for each of the three fab-to-

fab yield prognosis methods, as well as the within-fab baseline

method. As may be observed, the results corroborate our

previous observation that the predictor calibration method is

almost as efficient as the baseline within-fab yield prediction

method, achieving accuracy which is within a single-digit

percentage of the yield range. In contrast, model migration
and importance sampling are far less accurate, resulting in a

normalized prediction error of more than 16% of the yield

range for the majority of the probe test measurements.

These results are summarized in Tables II(a) and II(b) for

the two experiments, respectively. When migrating from fab A

to fab B, the average absolute prediction error over all probe

tests and wafers is calculated at 5.52%, 0.98%, and 0.54% for
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Fig. 8: Normalized fab-to-fab yield prediction error.

the three fab-to-fab migration methods, respectively, compared

to 0.16% for the within-fab baseline yield prediction. Normal-

ized to the yield range of each probe test, the results are 87.1%,

31.4%, 10.3%, and 5.6%, respectively. When migrating from

fab B to fab A, the average absolute prediction error over all

probe tests and wafers is 9.84%, 1.37%, and 0.35% for the

three fab-to-fab migration methods, respectively, compared to

0.23% for the within-fab baseline yield prediction. Normalized

to the yield range of each probe test, the results are 82.6%,

28.2%, 4.9%, and 3.2%, respectively.

V. CONCLUSION

E-test and probe test measurements exhibit strong corre-

lation which can be statistically harnessed for yield learning

purposes. As we demonstrated using a large dataset from a

65nm Texas Instruments RF transceiver produced in two dif-

ferent fabs, these correlations enable very accurate prediction

of parametric probe test yield from e-test measurements within

the same fab, with error ranging in the order of a few tenths of

a percentage. Moreover, using the e-test and probe test profiles

of a source fab and only the e-test profile of a target fab, which

can be obtained from prior devices fabricated therein, these

correlations facilitate highly accurate yield prognosis when

migrating a product across these fabs, with error ranging in

the order of half of a percentage.

TABLE II: Average error for fab-to-fab migration.

(a) Migrating from fab A to fab B

Model Importance Predictor
Metric migration sampling calibration Baseline

δi 5.52% 0.98% 0.54% 0.16%

εi 87.1% 31.47% 10.29% 5.6%

(b) Migrating from fab B to fab A

Model Importance Predictor
Metric migration sampling calibration Baseline

δi 9.84% 1.37% 0.35% 0.23%

εi 82.6% 28.2% 4.9% 3.2%
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