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Abstract—As CMOS technology continues to scale down,
the effect of process variations on yield and performance of
analog/RF ICs is becoming more prominent. To counteract this
effect, learning-based post-production tuning has been proposed,
wherein regression functions are trained and used to adjust tun-
able knobs based on low-cost alternate tests, thereby improving
the performances of a circuit and, by extension, increasing yield.
Of course, tunable knobs are also subject to process variations;
yet this is not an issue when the knobs are part of the procedure
that generates the data with which the regression models are
trained, as this data reflects the impact of process variations on
both the tunable circuit and the knobs. In various cases, however,
such as in heterogeneous integrated systems, 3D ICs, or multi-
chip modules, the knob circuitry may not be integrated on the
same die, thereby limiting our ability to obtain a comprehensive
set of training data. Accordingly, in this work we investigate
the impact of knob non-idealities which are not captured in the
training data, on the ability of the learned regression functions
to accurately predict the optimum knob position that maximizes
the performance of a circuit. Using a tunable cascode low-noise
amplifier (LNA) fabricated in 130nm CMOS process, alongside
external knobs designed as linear low drop out regulators (LDOs)
and voltage dividers operating on the bias voltages of the LNA, we
first quantify this impact. Then, we demonstrate that by explicitly
introducing “noise” in the knob output values used during
training set generation, we can effectively alleviate external knob
non-idealities and improve quality of tuning.

I. INTRODUCTION

Scaling of CMOS technologies into the deep sub-
micrometer regime is driven by two main reasons: (i) ultra
low-power requirements, and (ii) high frequency operation of
analog/RF ICs used in communications, medical and auto-
motive applications. To accommodate power requirements in
the order of µW and operating frequencies close to or higher
than mm-wave, i.e., 30GHz and above, which seems to be the
case for 5G next-generation communication networks, the only
viable solution is to use advanced CMOS technology nodes
due to their low supply voltages and high transit frequencies.
Despite the many advantages CMOS scaling offers, several
disadvantages also occur, among which process variations
proves to be the one that most greatly impacts performance of
analog/RF ICs. As a consequence, fabricated analog/RF ICs
experience significant shifts from their expected performance,
which results in an increase in yield loss.

To address this issue, circuit designers often follow a con-
servative design approach, pushing the device operating point
closer to the center of the design specification space rather than

closer to the specification limits defined by communication
protocols. However, conservative design approaches counteract
the advantages of CMOS scaling since critical performances,
such as gain and bandwidth, are deteriorated. On the other
hand, when aggressive design is employed, the most com-
mon practice for recovering the effects of process variations
on device performances and yield is to use post-production
calibration techniques [1]–[13]. The underlying principle of
post-production calibration, which can be performed either off-
line [1], [3], [4], [6], [8] or on-line [2], [5], [7], [9], is based on
tuning knobs which counteract the impact of process variations
by adjusting performances after a device has been fabricated.

Tuning knobs are an integral part of the calibration process
and operate on the design parameters of the IC, e.g., bias volt-
ages and currents. In [1]–[3], [8], [10], [14], tuning knobs are
considered as ideal supply sources. Practical implementations
of tuning knobs have been proposed in the literature, mainly
in the form of tunable MOS capacitors [4], [6], current sources
[4], [15], transistors with programmable width [16], adjustable
inductors [5], [7], bias actuators, and transmission lines [9].
Reported results verify that tuning knobs can adjust perfor-
mances of RF ICs, such as power amplifiers and LNAs, and
recover yield under excessive process variations. Nevertheless,
tuning knobs are also subject to process variations and, thus,
their impact on tuning effectiveness has to be considered.

When the knob circuity is an integral part of the tunable
design and is used during generation of the training set, the
impact of process variations is inherently reflected in the
trained regression models. For example, the impact of knob
variations on the tuning process was previously considered in
[16], wherein the calibrated device is an operational transcon-
ductance amplifier and its tunable components are transistors
with programmable width. However, as we describe in Section
II, there exist scenarios wherein it is not possible to create a
training set through a process that includes instances of the
tuning knob circuitry, as affected by process variations.

This paper focuses on such scenarios and seeks to (i) eluci-
date the problem, (ii) investigate the impact of external knob
non-idealities, arising due to process variations, on device
performances and on the ability of the tuning process to predict
the optimum knob position for optimizing the overall device
performance, and (iii) present a remedy for counteracting the
impact of external knob non-idealities on tuning effectiveness.
Results are reported using 36 tunable LNA instances fabricated
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Fig. 1. Knob non-idealities for a single chip.

Fig. 2. Limitations of existing tuning architectures.

in IBM’s 130nm CMOS process, alongside external tuning
knobs implemented as linear drop out regulators [17] and
voltage dividers operating on the bias voltages of the LNA.

II. DEALING WITH KNOB NON-IDEALITIES

A. Calibration Process

Post-production tuning consists of two phases. In the pre-
production phase, a training data set is generated, consisting
of device performances and alternate tests which are measured
for several, if not all, knob combinations for each available
device. Alternate tests [11] are low cost measurements which
are essential in order to eliminate the need for expensive
measurements and reduce cost. Using this data set, regression
models are trained to correlated performances to alternate
tests. In the testing phase, the trained models predict device
performances from the measured alternate tests. Accordingly,
the optimal knob setting is chosen based on a selection
criterion seeking to optimize performance and/or yield.

Calibration methods are divided into iterative test-and-tune
[3], [10], [13] and one-shot approaches [1], [2], [8], [12], [14].
The former require low-cost measurements for all possible
knob settings, whereas the latter require low-cost measure-
ments for a single knob setting, which is usually the nominal
knob position, i.e., the knob values used in the IC design.

B. Problem Definition

When ideal knobs are considered in the tuning process, as
is the case in [1]–[3], [8], [10], [14], training and testing is
performed with ideal values, i.e., values not affected by knob
process variations. For example, in the one-shot method, if ki
are the ideal knob values and ATi, Pi are the corresponding
low-cost alternate tests and performances respectively, then in
the pre-production phase a regression function f(ki, ATi, Pi)
is trained. In the testing phase, the inputs to this regression
function are, again, ki, as well as a single set of low-cost
measurements, ATi. Accordingly, the trained function, f , pre-
dicts a performance: Ypi = f(ki, ATi). The process is repeated
until all performances are predicted. In this case, the regression
error, εreg, i.e., the difference between measured and predicted
performances, is only due to model imperfections.

In reality, however, the output values of knobs controlling
the tunable device characteristics, e.g., bias voltages, will be
affected by process variations. Let us assume that the number
of ideal knob settings is m and the number of possible variant
knob values for each ideal knob setting is N . Accordingly,
predicted performances, Ypi, and measured performances, Pi,
for the ideal knob settings are vectors of m elements, whereas
actual performances, Pa, for the variant knob values are an
m ×N matrix. Figure 1 shows Ypi, Pi, and Pa, for a single
device over all knob positions. Ypi and Pi can have a single
value for each knob position as opposed to Pa which can have
any of the N values. The two dotted lines in Figure 1 represent
the upper and lower limits of the N possible values for each
knob position.

Knob variation in itself does not necessarily pose an issue.
Consider, for example, the on-die tuning architecture in Figure
2, which consists of a device under test (DUT) whose perfor-
mances are calibrated by knobs that are controlled by digital
circuitry, as well as circuitry that produces low-cost alternate
tests. If the data set used for training the regression models
employed in post-manufacturing tuning is obtained from mul-
tiple instances of the entire end-to-end tuning architecture, then
the impact of knob process variations is inherently taken into
account. Indeed, in this case, training and tuning are performed
with actual tuning knob values (ka), alternate test (ATa) and
performance (Pa) values, all of which have been consistently
subjected to process variations. Therefore, any error εreg in the
tuning method is attributed only to regression imperfections.

However, there exist various scenarios in which multiple in-
stances of the knob circuitry are not available during derivation
of the training dataset. For example, consider the case of het-
erogeneous integrated circuits, 3D ICs, or multi-chip modules,
where multiple die are integrated together through interposer
or other advanced interconnect and packaging technologies.
In such an environment, it is possible that the tuning knob
outputs for multiple die will be generated in a centralized
fashion through a single die, such as a power management
unit (PMU). In this case, during post-production tuning of
individual tunable die, the corresponding knob circuity is
not available. Therefore, either the ideal outputs of the knob
circuitry (i.e., voltage biases) will be directly provided through
external sources, or a reference knob circuitry housed on the
load-board of the automatic test equipment (ATE) will be
used. In either case, an inconsistency between the training
and the testing process is introduced, jeopardizing accuracy
of the learned regression models. Specifically, training will be
performed with the exact same values for each knob position,
i.e. with ideal values ki, ATi, and Pi, whereas actual values
ka and ATa will be employed in testing. In this case, knob
variations introduce an additional error, εknob, acting on top
of εreg , thereby producing an overall error εtot, which is due
to both εreg and εknob. Thus, εtot > εreg . Because of the
higher εtot, post-production calibration may not only predict
a sub-optimal knob position but may also cause yield loss if
the chosen knob setting results in performances falling out of
their specifications.
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Fig. 4. Tuning Knobs: (a) LDO schematic, (b) reference voltage supply, and (c) simulated LDO output from Cadence.

C. Remedy
To account for such external knob non-idealities and the cor-

responding higher error, training of the regression functions, f ,
should be done using performances, alternate tests and knob
settings resembling the realistic scenario where all of them
are affected by knob process variations. Since such training
data is not available, we synthetically enrich the existing data
to account for the impact of knob process variations on the
performances and alternate tests, by adding noise to the ideal
outputs of the tuning knob circuitry. Specifically, assuming that
the Spice model of the tuning circuitry is known, Monte Carlo
simulation can be used for each ideal knob position in order to
generate a set of N variants, each of which results in slightly
different knob output values. We can, then, use these variant
knob output values during training dataset generation, in order
to obtain performances and alternate tests which encompass
the impact of knob process variation. In this way, εtot is
reduced, becoming comparable to εreg .

Respectively, we point out that: (i) the term noise is used to
capture the impact of process variations on the knob circuitry,
(ii) this noise is not Additive White Gaussian Noise (AWGN);
rather, it reflects the statistics of how process variations impact
the knob circuitry and, accordingly, it has statistical structure,

which is what we seek to learn, and (iii) training with noise,
in this case, results in models which have considered both the
impact of process variations on the DUT/alternate tests and
the impact of process variations on the knob circuitry

III. EXPERIMENTAL PLATFORM

The experimental platform that was used to demonstrate
the impact of external knob non-idealities on the prediction
accuracy and the ability of the calibration process to correctly
tune the device is an LNA whose tuning knobs have been
implemented as an LDO and resistive voltage dividers.

A. Tunable LNA

The fabricated chip is a cascode LNA in IBM’s 130nm
CMOS process. To facilitate measurements, the chip is
mounted on a printed circuit board (PCB). The PCB is shown
in Figure 3(a), whereas Figure 3(b) depicts a micropho-
tograpgh of a die, carrying 4 LNAs. The LNA schematic
along with its specifications are shown in Figure 3(c). The
circuit comprises two transistors connected in a common
source, M1, and common gate, M2, configuration. M3 on
the other hand is used for bias purposes. RF transistors have
been used in order to achieve high performance; thus, their
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Fig. 5. Experimental dataset.

supply voltage is limited by the technology to 1.2V. The
device tunable characteristics are bias voltages Vbias1, Vbias2,
as well as supply voltage, Vbias3, and are shown in Figure
3(c). For alternate test purposes, the LNA is excited by a
voltage-controlled oscillator (VCO), which has a tuning range
of 0.9GHz-1.6GHz and which in our case provides a signal
of 1.57GHz, as described in Figure 3(d). The output of the
circuit is connected to a peak detector, which translates the
high frequency input signal to a DC value. Schematic and
performance characteristics of the peak detector are shown in
Figure 3(e). More details on the fabricated chip can be found
in [2], [12].

B. Knob Implementation

Unlike inductors, MOS capacitors, current sources, etc.,
which can only control specific LNA performances, volt-
ages have the ability to determine the behavior of all LNA
performances, either directly or indirectly. Therefore, in this
work, bias voltages have been chosen as the tunable LNA
characteristics. In the case of the supply voltage (Vbias3),
the implemented knob should not only provide a constant
voltage, but also a current that properly biases the circuit.
To satisfy both requirements, we have implemented the knob
controlling the supply voltage as an LDO, whose simplified
schematic is shown in Figure 4(a). The LDO consists of a
transistor acting as a pass element and an error amplifier,
which senses the output voltage, compares it with a reference
voltage, Vref , and accordingly drives the pass element until
the output voltage, Vout, becomes equal to Vref [17]. The
reference voltage is provided by the circuit of Figure 4(b).
The gates of switches M1 −M14 are controlled by a digital
knob code, providing one of the desirable output voltages.
These voltages are created through a resistive voltage divider
network. Since LNA transistors M1 and M2 in Figure 3(c)
do not demand current supply, the resistive voltage divider
can be used for implementing knobs that provide Vbias1 and
Vbias2. The LDO circuit was designed in the same 130nm
technology using transistors which are biased at 2.5V. Cadence
simulations, which are depicted in Figure 4(c), show the output
of the LDO, ranging from 0.8V-1.5V versus time for all
possible knob codes.

C. Experimental Flow and Dataset

The minimum and maximum values that the knobs can
provide are defined by the maximum VDD of the technology.
Thus, considering that for the LNA (VDD)max = 1.2V , knob
values were set from 0.8V-1.4V with a step of 0.1V. This
results in 7 positions per knob and 73 = 343 settings per
LNA.

To emulate the effect of knob non-idealities, each LNA
is supplied with the ideal knob setting values as well as
process-varied knob values. These non-ideal knob values are
generated through Monte Carlo simulations of the LDO and
the two voltage dividers. Specifically, we generate 11 Monte
Carlo values per knob combination. For these values, we
measure 6 performances: input reflection coefficient (S11),
reverse isolation (S12), power gain (S21), output reflection
coefficient (S22), noise figure (NF ) and power consumption
(Pcons). We also measure 3 peak detector values (PD1−3),
which are generated through 3 different VCO frequencies.
Measurements are repeated for all available 36 LNAs. This
results in a dataset of 11× 343× 36× 9 = 1, 222, 452 entries,
which is illustrated in Figure 5.

We randomly split the available LNAs into a dataset of
26 devices for training and 10 devices for testing. In the
training phase, regression functions f1 − f6 are built for
the 6 individual performances (S11, S12, S21, S22, NF, Pcons)
using peak detector values corresponding to the median knob
position, i.e., (k1, k2, k3) = (1.2, 1.2, 1.2)V , of the ideal
circuit for every knob setting. For the remaining 10 LNAs of
the testing set, peak detector values for each of the 11 knob-
variants at the median knob position, along with all possible
knob settings are used as inputs to f1 − f6 in order to obtain
predicted performances for all 343 knob settings.

IV. EXPERIMENTAL RESULTS

In an LNA the crucial parameters that reflect its performance
are voltage/power gain (S21) - equal in this work since the
device is matched at 50Ω at its input and output - NF , and
Pcons. Due to the increased demand for low-power, yet high
performance ICs, an explicit way to characterize the overall
performance of an LNA is provided by the following Figure
of Merit (FoM) [18]:

FoM =
S21

Pcons · (NF − 1)
(1)

Using this dataset, in the following sections we investigate:
(i) the impact of knob-variations on the ability of the cali-
bration method to accurately predict the knob position that
maximizes the FoM, and (ii) the modified model that is needed
in order to account for knob-variations and consequently select
the optimum knob setting.

A. Impact of Knob Non-Idealities

The distribution of knob output voltages is shown in Figure
6. The neutral position corresponds to the bold line of the box
plot and ranges from 0.8V-1.4V. The most extreme cases of
knob-variations result in knob values shifted by approximately
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TABLE I
OPTIMAL-KNOB SELECTION ABILITY

LNA Ranking Percentile Difference

Non-variant Variant Training w. noise Non-variant(%) Variant(%) Training w. noise(%)
1 4 16 10 2.7 11.4 8.7
2 3 20 9 1.3 37.3 8.3
3 7 23 3 5.1 15.1 0.6
4 3 90 4 0.05 29.6 3.4
5 7 45 16 3.8 20.2 8.9
6 5 19 9 2.5 10.2 4.2
7 1 38 30 0 17.3 13.9
8 2 20 1 0.2 6.7 0
9 6 22 3 2.4 33.4 2.3
10 7 81 1 1.8 24.9 0

Average 4.5 37.4 8.5 1.8 22.5 5
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Fig. 6. Simulated LDO variations for all possible voltage outputs.

Fig. 7. Measured performance variations for all LNAs.

0.04V from the ideal position. We note that the distribution
of knob output voltages is highly dependent on the specific
voltage level because of the LDO linearity. Due to these knob
variations, excessive performance variations are also produced.

Fig. 8. Truth table for ideal and varied knob settings.

This is highlighted in Figure 7, wherein actual measured
performances, i.e., performances affected by knob process
variations, S11, S12, S21, S22, NF , and Pcons for all 3430
knob-variant positions are compared against ideal measured
performances, i.e., performances corresponding to the 343
ideal, non-variant knob positions (bold line). For the purpose
of comparison, for each of the 343 ideal knob positions,
we use the absolute distance between the LNA performances
for this knob position and those obtained for each of the
10 knob-variant positions. Reported values in Figure 7 are
normalized over their range. Knob non-idealities also have an
impact on yield. This is shown in Figure 8, where measured
performances are projected as passing or failing devices based
on the LNA specifications (Figure 3(c)). When knob-variations
are considered, a significant number of test escapes and yield
loss, in the order of 4.6% occurs. Specifically, for the entire
population, 382 ideal knob-settings are marked as passing
whereas their variant counterparts are marked as failing. The
opposite case is observed for 193 knob settings.

The impact of knob non-idealities on effectiveness of opti-
mal knob prediction is also investigated. This is illustrated
in Table I, in which for the 10 LNAs of the testing set,
selection ability is shown in terms of ranking and percentile
difference between the predicted position and the measured
position corresponding to the maximum FoM . These values
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are calculated as follows: after the model predicts FoM values
for all possible combinations, we pick the one corresponding
to the maximum FoM . Then, we refer to the corresponding
position in the measured dataset and compare its performance
with the measured best FoM . For the non-variant case, i.e.,
when the peak detector values of the ideal knobs are provided
as inputs to the regression model, the model predicts on
average a knob setting with a ranking of 4.5, which is 1.8%
different from the measured best FoM . The error in this case
is only due to regression error. In the practical case, where
knobs are subject to process variations but for reasons such
as the those discussed in Section II.B. the tuning circuitry is
not available during training, knob variation error acts on top
of regression error, resulting in a higher total error. This is
shown in Table I as the variant case for which the predicted
knob position has a ranking of 37.4 with a corresponding
difference of 22.5% as compared to the measured best FoM .
We note that the reported variant values for each LNA refer
to the worst of the 10 variant cases. Yet, they represent knob
values which can occur in a practical knob implementation.
When the proposed remedy is applied, i.e., when knob values
obtained via Monte Carlo simulations are used for training
the regression model, the model becomes more accurate in
terms of knob selection, as depicted in Table I. When training
with noise, the average ranking among the 10 LNAs of the
testing set is improved from 37.4 to 8.5 and the percentile
error is reduced from 22.5% to 5%. The inability of the
proposed remedy to always identify the optimum solution
comes from both error sources, i.e., εreg and εknob. While
it is difficult to decouple and distinguish regression error
from knob variation error, the overall error of the new model
is significantly decreased, as compared to the variant case,
thus resulting in an important improvement in terms of knob
selection effectiveness.

V. CONCLUSION

This work highlighted a limitation of learning-based post-
production calibration in analog/RF ICs, which occurs when
the tuning circuitry and the IC are not integrated on the same
die. For this purpose, we designed an LDO and two voltage
dividers as tuning knobs for an LNA fabricated in IBM’s
130nm CMOS process, and we showed that when the knob
circuitry is not available during training, knob non-idealities
greatly affect the ability of the trained regression functions to
accurately predict and select the knob setting that optimizes the
overall performance of the LNA. Subsequently, we proposed
a remedy which is based on training the regression functions
with Monte-Carlo generated “noise” in the knob output values,
and we demonstrated that a significant improvement can be
achieved in terms of calibration effectiveness.
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