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Abstract—Continuous technology scaling and the introduction
of advanced technology nodes in Integrated Circuit (IC) fabrica-
tion is constantly exposing new manufacturability issues. Design
hotspots are one of such problems, which are a result of complex
design and process interactions. These hotspots are known to
vary from design to design and foundries expect such hotspots
to be predicted early and corrected in the design stage itself,
as opposed to a process fix for every hotspot, which would
be intractable. Various efforts have been made in the past to
address this issue by using a known database of hotspots as a
source of information. Most of those works use either Machine
Learning (ML) or Pattern Matching (PM) techniques to identify
and predict hotspots in new incoming designs. Almost all of those
methods suffer from high false-alarm rates, mainly because (i)
they are oblivious to the root causes of hotspots, and (ii) a large
hotspot database to learn from is generally not available. In this
work, we try to address these limitations by using novel hotspot
Design of Experiments (DOEs) and synthetic pattern generation
approaches. We analyze the effectiveness of the proposed method
against the state-of-the-art on a 45nm process, using industry
standard tools and designs.

I. INTRODUCTION

Continued technology scaling and the introduction of every
advanced technology node in Integrated Circuit (IC) fabrica-
tion brings in new challenges for foundries. Lithography is a
major challenge during technology development. As shown in
Figure 1, in early technology nodes, the wavelength of light
used in lithography was much smaller than the features being
printed. In the latest nodes, this has reversed and lithography
has become extremely challenging due to complex interactions
between designs and sophisticated unit processes. To mitigate
some of the lithography-related issues and ensure reliable
manufacturing, various Resolution Enhancement Techniques
(RETs) such as Optical Proximity Correction (OPC), Multi-
patterning, Phase-shifted masks etc., are used. Despite em-
ploying RETs, certain areas in the design (layout), which
are Design Rule Check (DRC) clean and Design For Manu-
facturability Guidelines (DFMGs) compliant, show abnormal
and unexplained variation, causing parametric or hard defects.
Such areas are termed as ‘Hotspots’ (popularly known as
‘Lithographic hotspots’ or ‘Design weak-points’). The cause
of hotspots is mostly attributed to their neighborhood (a
set of polygons surrounding the hotspot area) which causes
complex interactions of light during the lithography process.
Since, hotspots vary from design to design, identifying their
root causes and finding a fix for all such hotspots through
process changes is extremely difficult, time consuming and

Fig. 1. Changes in lithography with silicon feature sizes [2]

expensive. Thus, in most cases, foundries create a database
of known hotspots and restrict their presence in incoming
customer designs. A hotspot database is usually populated
through Failure Analysis (FA), inline inspections, lithographic
simulations using well-calibrated lithographic models, etc. [1].
If a design pattern turns out to be a hotspot in later stages of
fabrication, especially, after mask production, it may result in
huge financial losses to the foundry. Hence, there is a great
incentive to identify hotspots early and correct them in the
design stage itself.

Many researchers have suggested pattern matching and
machine learning-based techniques to identify and predict
hotspots in new incoming designs. Unlike previous works
[3], [4], where the focus has been on using more and more
powerful machine learning tools, we take a novel approach
to improving hotspot detection by increasing the information-
theoretic content of the training data that these methods use.
We call this process ‘Database enhancement’ and it involves
two procedures: (i) ‘Synthetic pattern generation’ and, (ii)
‘Design of experiments’: Combined, these procedures enable
a machine learning entity to effectively learn the ‘root cause
features’ of hotspots. These procedures are also ‘method
agnostic’, as they can be used with any of the previously pro-
posed hotspot detection methods to improve their performance.

The rest of the paper is organized as the following: The
State-Of-The-Art (SOTA) and its limitations are explained in
detail in section II. The proposed methodology is presented in
section III. Experimental results are discussed in section IV
and conclusions are drawn in section V.
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Fig. 2. (a) A hotspot pattern, (b-d) variants of pattern ‘a’ which are non-hotspots

II. THE STATE-OF-THE-ART AND ITS LIMITATIONS

Hotspot detection has been a topic of high interest in the
past few years. Authors of [5], [6] have used pattern matching
techniques, wherein a new design is compared to a database
of previously seen hotspots and potential hotspot areas in
the design are flagged. While these techniques are helpful
in identifying known hotspots, they often fail in predicting
unknown (never-seen-before) hotspots. To address this issue,
machine learning techniques using Support Vector Machines
(SVMs) [4], Artificial Neural Networks (ANNs) [7], multi-
ple/meta classifiers [3] etc. were proposed. They essentially
‘learn’ (are trained) from a known database and use the trained
model to make a prediction on new patterns. Over time,
various flavors of these techniques have been proposed which
have provided better accuracy, faster run-times etc., [8], [9].
However, most of them still suffer from high false alarm-rates,
mainly because (i) these techniques are focused on learning the
major differences between hotspots and non-hotspots, rather
than their root cause features, and (ii) the lack of large hotspot
databases limits their learning capabilities. Often, only a small
number of known hotspots are used for learning [4], [5].
The ‘Database enhancement’ approach proposed in this work
specifically addresses these issues.

A. False-Alarms In The State-Of-The-Art

The state-of-the-art machine learning-based hotspot detec-
tion techniques suffer from high false-alarm rates [3]–[5],
[9]. The source of these false-alarms is illustrated using the
following example. Figure 2 shows four patterns with their
contours (Process Variability (PV) bands) obtained from litho
simulations. Among them, pattern (a) is a hotspot due to a
short between two of its polygons. Patterns (b-d) are very
similar to pattern (a), but their subtle differences from pattern
(a) makes them non-hotspots.

Case 1 - Let us assume that a machine learning based
classifier is being trained to detect hotspots and among the
patterns shown in Figure 2, only pattern (a) is part of its
training dataset. During testing, if pattern (b) is presented to
the classifier, it tends to classify it as a hotspot due to its close
similarity to pattern (a). But, in reality, it is not a hotspot due
to the increased space S1 + ∆S1. The classifier made this
error because it had failed to recognize S1 as a root cause
feature of this pattern.

Case 2 - Let us assume that the classifier’s training dataset
includes both patterns (a) and (b). In this case, the classifier
easily recognizes that the constrained space S1 makes this

pattern a hotspot and a relaxed space S1 + ∆S1 would make
it a non-hotspot. Then, if pattern (c), which is very similar
to patterns (a) & (b) (also having a constrained space S1),
is presented to the classifier, the classifier tends to call it a
hotspot. But in reality, it is not a hotspot, because of the
increased width W1 + ∆W1. Here, the classifier predicted
incorrectly because, during training, it had only recognized
S1 as a root cause feature, but not W1. Similarly, the feature
W2 is also a root cause feature.

From the above example, it becomes evident that, unless
otherwise trained with many variants of a known hotspot,
the ML entity assumes that all polygons in a pattern equally
contribute towards making it a hotspot and fails to learn
the root cause features. Without such learning, it remains
oblivious to the subtle variations in similar-looking patterns
and tends to misclassify them, creating large amounts of false-
alarms. Hence, enhancing the database with sufficient variants
of known hotspots becomes imperative towards empowering
an ML entity to learn effectively.

III. PROPOSED METHODOLOGY

The proposed hotspot detection flow is shown in Figure 3. A
high-level description is provided below and its major blocks
are explained in detail in the next sub-sections. This flow is
typically implemented at the foundry side and executed prior
to mask fabrication; yet parts of it can be potentially incorpo-
rated into the Product Design Kits (PDKs) and transferred to
the customer, in order to reduce design debug cycles.

A set of known hotspots and non-hotspots gathered from
prior experience form the initial database. Design of Ex-
periments (DOEs) is performed to increase the information-
theoretic content of the initial database. As part of these
experiments, synthetic variants (patterns) of known hotspots
are generated and subjected to process simulations (litho/litho-
etch) to determine which of the patterns are hotspots. Synthetic
patterns, along with the initial database, form the enhanced
database. Patterns in the enhanced database are converted into
numerical feature vectors. Feature vectors are, then, subjected
to dimensionality reduction and a machine learning-based
classifier (i.e., an SVM) is trained using the dimensionality-
reduced feature vectors. The trained model is, then, stored to
evaluate future incoming designs. When a foundry receives a
new design from its customers, the design is decomposed into
smaller patterns and predictions are made on these patterns
using the trained classifier. Patterns classified as hotspots are
subjected to further investigation, flagged as areas of interest
for inline inspections, and drive design fixes if warranted.
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Fig. 3. The proposed machine learning-based Hotspot detection flow
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Fig. 4. (a) A hotspot pattern, (b-f) Synthetic patterns generated from pattern
‘a’. Red markers indicate the subtle differences from pattern ‘a’

A. Synthetic Pattern Generation and DOEs

For every hotspot in the initial database, multiple synthetic
patterns are generated by changing one or more features at a
time. Features such as corner to corner distances, jogs, line-end
positions, layer spacing, layer area etc., are varied. Figure 4 (a)
shows one such hotspot and Figures 4 (b-f) show some of its
synthetic patterns. A time-efficient method for varying these
features relies on perpendicularly moving the edges of one or
more polygons in each snippet by a random distance. This
approach allows to quickly generate multiple patterns whose
variance can be easily controlled by two parameters. The first
parameter p is the probability of any given edge to move or
remain stationary. By increasing this probability, we effectively
increase the number of polygons and their edges that are
altered in the snippets. The second parameter d is associated
with a distribution of distances, which is sampled for every
polygon edge selected by the first parameter. The sampled
value denotes the distance by which the edge will be displaced.
These distance values follow a normal distribution centered at
0. In this way, most synthetic patterns are slight variants of the
original pattern, thereby enabling us to learn the root causes
effectively. However, the variation between generated patterns
can be easily changed by varying the parameter d. Essentially,
the parameter d can be thought of as the standard deviation
of this distribution. Parameters p and d are varied based on
domain knowledge and experimentation.

As expected, the above-mentioned procedure results in a
plethora of patterns, many of which might not even pass the
DRC. To ensure that valid layout topologies are generated
and to make this process run-time efficient, we implemented
a minimal DRC engine in Python, which we execute after
every pattern is generated. This check ensures that most of
the generated patterns are valid. However, since implementing
complex design rule checks becomes complicated, all synthetic
patterns which pass this minimal DRC check are also subjected
to a full DRC using CalibreDRC. Through this approach, we
can ensure that the vast majority of the generated patterns are
DRC clean and usable. Synthetic patterns are, then, subjected
to lithographic simulations to ascertain the ground truth about
them. To this end, it is assumed that litho models are well-
calibrated to the process, as is often the case in mature
processes (with PDKs 1.0 and above). On the other hand,
during early technology development, foundries may not have
well-calibrated models readily available, but do have access
to plenty of test-silicon. In those situations, simulation results
from crude models can be used as a guide to direct actual
silicon-based experiments.

The number of synthetic patterns necessary to significantly
improve the information-theoretic content in the training set
depends on the process node, design complexity, layer of in-
terest etc. We have studied this dependency on a 45nm process
and a detailed explanation can be found in the experimental
results section. In general, these experiments are not run-time
intensive, as they work with small layout snippets. Moreover,
this is a one-time procedure, hence a large number of synthetic
patterns could be generated. Synthetic patterns, along with
their litho simulation results, are added into the initial database
in order to create the enhanced database/dataset.

B. Feature Extraction

In all proposed machine learning-based hotspot detection
schemes, hotspot and non-hotspot patterns are initially ob-
tained in the form of layout snippets and then subjected to
feature extraction, whereby the image snippet is transformed
into a numerical feature vector which can be used to train/test
a machine learning entity. Various feature extraction methods,
such as bounded rectangle region-based [7], polygon fragment-
based [4], concentric circle sampling-based [9], density trans-
form [5] etc., have been proposed in the past, suited to
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Fig. 5. Feature extraction (a) Grid based co-ordinate transform, (b) Features extracted from within a grid block. Top - features of a polygon without
inner-corners, Bottom - features of a polygon with an inner-corner, (c) A plot showing the weights associated with a 17x17 grid used in this work

the detection flow they were used in. While every method
has its own drawbacks and there is no clear winner among
them, density transformation has been most widely used and
works reasonably well. However, it fails to capture the minor
variations which are crucial for effective learning.

In this work, we propose a novel feature extraction tech-
nique, which we call ‘Co-ordinate Transform’. In co-ordinate
transformation, as illustrated in Figure 5(a), an n ∗ n grid is
overlapped on a pattern, where n is the number of blocks
on each dimension of the grid. n is chosen such that each
block covers only one, or a part of one polygon in the
pattern. n is given by (pattern size/layer half pitch).
Polygons present within each block are transformed into
five features: {bottom-left x co-ordinate, bottom-left y co-
ordinate, top-right x co-ordinate, top-right y co-ordinate, cor-
ner info}. While the first four features capture most of the
information, they fail to capture the inner corner information.
Hence, a fifth feature ‘corner info’, shown in Figure 5(b),
is necessary. This is given by the difference between the
polygon bounding box area (area in white dotted line)
and the layer area (area in red). Features from every block
of the grid are extracted and their ordered vector makes
the final feature vector. While the five features capture the
geometric information of polygons, their ordering captures the
location of those polygons within the pattern.

Comparison to density transform: In density transform,
different polygons may result in the same density value. For
instance, if a polygon with area Pa is present inside a block
with area Ba, the density of that block will remain Pa/Ba,
irrespective of whether the polygon has a corner, is oriented
vertically or horizontally, occupies the top, bottom, left or
right portions of the block. To reduce the information loss
due to these issues, density transform is often used with
very fine grids (having large number of blocks). But such
fine grids result in large number of features with very little
variation within the features. This increases the ML model
complexity and leads to over-fitting. On the other hand, co-
ordinate transform is free from such issues as it uses co-
ordinates to capture polygon information and uses coarse grids
which, in turn, creates fewer features yet with more variation.

Weighted features: As an option, during co-ordinate trans-
formation, weights can be assigned to various blocks of the
grid, as shown in Figure 5(c). Typically, minor variations in
the central area of patterns have high influence in causing
hotspots, while this influence fades as we move towards the
periphery. Given enough data, an effective machine learning
entity can learn this variation by itself, but, adding domain
knowledge like this helps to work with smaller datasets, faster
training times etc.

C. Classification

Hotspot detection requires a robust two-class classifier
which can learn a separation boundary between hotspots and
non-hotspots with maximum margin. In this work, a non-linear
SVM is used with a Radial Basis Function (RBF) kernel. As
a pre-processing step, dimensionality reduction is performed
using Principal Component Analysis (PCA). While retaining
most of the variation in the dataset, PCA reduces the number of
features into a smaller subset called ‘principal components’.
Working with principal components aids data visualization,
reduces ML model complexity etc. Detailed discussion of
SVMs and PCA is out of the scope of this work; For more
information, the reader is referred to [10] and [11] respectively.

Class balancing: Typically, the number of known hotspots
patterns available for training is smaller compared to known
non-hotspot patterns. Training with such imbalanced datasets
results in a skewed classifier and the classifier tends to favor
the dominating class. To avoid this, the minority class is re-
sampled (replicated) and the class sizes are equalized. We
noted that, by doing so, we do not alter the information-
theoretic content of the dataset; we only help evade the skewed
learning problem. Handling imbalanced datasets is discussed
in detail in [12].

D. Layout Decomposition

When a foundry receives a new design from its customers,
in order to perform hotspot detection, the design needs to be
decomposed into patterns. As shown in Figure 6(a), patterns
have two important attributes: a) Hotspot region: The region
where actual defects (shorts or opens) are anticipated. b)
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Neighborhood: The area surrounding the hotspot region, which
could have possibly caused the defect. The extent (size) of
the neighborhood varies from technology node to node and
is often determined through experimentation. It is safe to
use a larger neighborhood than suspected, because, if the
polygons towards the periphery of the pattern are indeed
benign, an effective machine learning entity would ignore
them by assigning low weights to corresponding features. The
bounding box encapsulating the neighborhood is popularly
known as a ‘Window’. To capture patterns from a layout, a
moving window based approach is used, as shown in Figure
6(b). The step size for the window movement in both x and y
directions should be carefully selected to ensure that the entire
layout is covered and every part of the layout appears within
the hotspot region of at least one pattern. Patterns obtained
from this step form the test set and are tested for hotspots
using the trained classifier.

IV. EXPERIMENTAL RESULTS

The objective of this work is to show that enhancing
the training dataset using synthetic patterns indeed increases
its information-theoretic content and, in turn, reduces false-
alarms. To demonstrate this, we implemented the machine
learning-based hotspot detection flow shown in Figure 3. The
classifier in this flow is trained with and without an enhanced
dataset and tested against a common testing dataset. In the rest
of the paper, we refer to the classifier trained with an enhanced
dataset as ‘enhanced classifier’ and to the one trained with
the non-enhanced dataset as ‘non-enhanced classifier’. The
non-enhanced classifier is the State-Of-The-Art (SOTA). The
difference between the prediction results of the two classifiers
indicates the effectiveness of this approach.

For this analysis, we obtained a Register-Transfer-Level
(RTL) code of an Advanced Encryption Standard (AES) en-
cryption core from [13]. To create the design layout, the RTL
code was synthesized, placed and routed using the Nangate
open cell library [14] which is based on a 45nm PDK [15].

Generating the non-enhanced dataset: From a randomly
chosen area of the AES layout, 40,000 patterns are captured
on Metal1 (M1) layer using the Calibre Pattern Match tool.
Litho simulations are performed using Calibre Litho-Friendly-
Design (LFD) tool-kit [16], with the litho models provided in

TABLE I
EXPERIMENTAL SETUP

Parameter Value
Patterns in the initial dataset 40,000

Patterns used for training 20,000 (50%)

Patterns used for testing 20,000 (50%)

Synthetic patterns used for enhancement (per
hotspot in the training set) 200

Training set size after class balancing (non en-
hanced dataset) 38,426

Training set size after class balancing (enhanced
dataset) 246,562

Synthetic patterns added to the test set ≈280 (per hotspot
in the training set)

Test set size after class balancing and synthetic
pattern addition 238,408

Window size (each side) 8.5 ∗ layer pitch

Window step size (x and y direction) 1.5 ∗ layer pitch

Grid size 17 ∗ 17

Number of features 1445

Features used after PCA 300

the PDK. Simulation results ascertain the ground-truth for the
captured patterns. 50% of this dataset is kept aside as the test
set and never used in the training process. The other 50% is
used for training and is referred to as ‘non-enhanced dataset’1.

Generating the enhanced dataset: The non-enhanced dataset
generated in the previous step contains 787 hotspots. For every
one of these hotspots, 500 synthetic variants are generated.
Of them, approximately 480 passed DRC and, among them,
200 are used in training. Litho simulations are performed on
all DRC-clean synthetic patterns and their ground truth (i.e.
hotspot vs. non-hotspot) is obtained. The synthetic patterns
along with the patterns in the non-enhanced dataset, together
form the ‘enhanced dataset’.

Both the enhanced and non-enhanced datasets are generated
using co-ordinate transform and have weighted features as
explained in section III-B.

About 280 synthetic patterns per hotspot, which are not used
in training, are added to the common test set. Note that, these
are DRC-clean patterns which could potentially occur in any
future incoming designs. As explained in section II-A, these
are the type of patterns which are often misclassified due to the
subtle variations among them. Hence, it is imperative to have
them in the test set, in order to validate whether the trained
model is robust enough to classify them correctly.

As explained in section III-C, an SVM with an RBF kernel
is used as a two-class classifier. While training a classifier,
or any machine learning based entity, some of the model
parameters require ‘tuning’ to learn effectively. In this case, to
be fair, we have ensured that, both enhanced and non-enhanced

1Some of the prior works [5], [8], [9] have used the pattern database
provided by ICCAD ’12 CAD contest [17] as a benchmark. While we sought
to use the same, that dataset is from 28nm and 32nm technologies for which
Litho models are not publicly available. Few other works [3], [4] have used a
set of designs whose source is not published. Hence, for this analysis, design
layout was generated using open source RTL codes.
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TABLE II
EXPERIMENTAL RESULTS

Metric SOTA This
work Formula Used

hotspot hit rate 89.20% 95.70% predicted hotspots
total hotspots

non-hotspot hit rate 41.50% 74.18% predicted non hotspots
total non hotspots

Correct prediction rate 70.60% 87.31% hotspothits+non hotspothits
total patterns tested

False positive rate 22.81% 10.06% false pos
total patterns tested

False negative rate 6.59% 2.63% false neg
total patterns tested

Total prediction error 29.40% 12.69% false pos+false neg
total patterns tested

Total improvement from this work - re-
duction in prediction error by 56.8%
(% change from 29.40% to 12.69%)

tot errSOTA−tot errthis work
tot errSOTA

classifiers are performing at their best by tuning their model
parameters ‘C’ and ‘gamma’ using grid-search methods [18].

Training datasets are subjected to class balancing as ex-
plained in section III-C. Final training and testing set sizes,
and other setup parameters are reported in Table I. The test set
is tested by both the enhanced and non-enhanced classifiers.
Results are reported in Table II. The results clearly indicate
that the enhanced classifier performs better and has reduced
the classification error by about 57%.

The number of synthetic patterns to be generated has to be
decided by the user. To aid this process, we performed a study
where, a non-enhanced dataset of 5,000 patterns was obtained
and the number of synthetic patterns used to enhance the
dataset was varied. As seen in Figure 7, increasing the number
of patterns continuously reduces the classification error. When
the error due to the addition of 0 synthetic patterns is taken
as baseline, we can observe that, an addition of a mere 40
synthetic patterns (per known hotspot) reduces classification
error by about 36% (% change from 29.40% to 18.7%). This
testifies the effectiveness and the practicality of this approach.

V. CONCLUSION

We have discussed the problem of lithographic hotspots
in advanced technology nodes, analyzed the state-of-the-art
in this domain and highlighted that they suffer from high
false-alarm rates. To address these issues, we have proposed
a novel database enhancement approach which involves syn-
thetic pattern generation and design of experiments. We have
implemented the proposed flow using a 45nm PDK and have
demonstrated about 57% reduction in classification error in
comparison to the state-of-the-art.
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