
Analog Performance Locking through Neural Network-Based Biasing
Georgios Volanis, Yichuan Lu, Sai Govinda Rao Nimmalapudi,
Angelos Antonopoulos, Andrew Marshall and Yiorgos Makris

Department of Electrical and Computer Engineering, The University of Texas at Dallas

Abstract—We introduce a method for protecting analog Inte-
grated Circuits (ICs) against unauthorized use by obfuscating
their operating point using an analog neural network. With the
model of the trained analog neural network acting as a lock
and its inputs as the key, only the correct key combination will
unlock the analog IC, by providing it with the required bias
conditions to operate within its specification limits. By defining
the key combinations in the continuous analog space and by
using floating gate transistors to realize the neural network,
the proposed method defends itself against efforts to guess the
correct key through model approximation attacks. Moreover, by
inhibiting retraining of the analog neural network, the proposed
solution enables customization of the lock and key combination
to each IC. The proposed solution has been implemented in
silicon through a proof-of-concept experimental setup comprising
a Low-Noise Amplifier (LNA) and a programmable analog neural
network. Experimental results demonstrate the effectiveness of
the method in preventing unauthorized use of an analog IC.

I. INTRODUCTION

The increasing use of integrated circuits (ICs) in various
industrial sectors, including telecommunications, automotive
and military systems, is accompanied by a rising level of
concern regarding IC reliability and security. Prevention of
unauthorized use and recycling of such ICs constitute two
major challenges in the field of hardware security. Indeed,
many mission-critical ICs include sensitive information which
should not be disclosed to unauthorized parties. Moreover,
IC recycling costs semiconductor industry billions of dollars
annually in lost revenue. As a result, several methods have
been proposed for locking ICs against unauthorized usage.

The majority of such locking techniques published so far
focus on the protection of digital ICs. In most of these works
[1], [2], [3], [4] a combinational logic locking technique is
applied by leveraging the large number of transistors to hide
functionality. Digital designs are obfuscated by adding extra
inputs and logic gates, which prevent an IC from implementing
the correct Boolean function unless a correct key is provided at
these inputs. Locking of analog ICs, on the other hand, is a sig-
nificantly different and more challenging task. This is mainly
due to limited number of topologies for implementing typical
analog blocks, as well as the inherently small number of
transistors and the consideration of multiple parameters during
the design process. For this reason, hiding IC functionality is
not a plausible path for locking analog ICs. However, locking
analog IC performance is a potential solution to this problem.
Specifically, the idea behind this approach is to require a secret
key so that an analog block operates within its specifications.

Two recently proposed methods [5], [6] follow the afore-
mentioned analog performance locking paradigm. In both of
these solutions, the idea of combinational locking of biasing
currents in analog circuits is explored. In [5], the bias is
obfuscated by using multiple branches of biasing transistors.

The number of on-transistors is controlled by a digital key
and only the correct key can bias the circuit to the desired
operating point. The authors of [6], combine the idea of
hardware metering and bias locking to create a unique key
for each chip. While these method offer the first solutions
for analog design obfuscation, they are susceptible to the lock
removal attack. Furthermore, in the solution of [5], the relation
between the key and the IC performance is simple and can
be learned by model approximation attacks. In [6], however,
this limitation is ameliorated through the use of satisfiability
modulo theories for designing a configurable current mirror.
Finally, in both these works, the key is in the digital domain
whereas we are interested in exploiting the continuous analog
space for defining keys.

In this work, we propose a method for protecting analog ICs
from unauthorized use, by locking their performance through
an analog neural network. This is achieved by eliminating
direct access to the biasing inputs of the analog IC and by
relying, instead, on the analog neural network for biasing
the IC to its operating point. Essentially, the trained neural
network acts as a lock that provides the desired bias voltages
to the IC if and only if the analog correct key is applied at its
inputs. In other words, only the input of the neural network
that corresponds to the correct key will result in the operation
of the IC within its specification limits. Programmability of
the analog neural network through the use of analog floating
gate transistors (FGTs), which serve as permanent storage
for the synapse weights, along with the continuous input
domain, which allows for a very large number of analog key
options, make our method secure against brute force and model
approximation attacks for guessing the key. Additionally, they
enable individualization of the key per chip, which further
strengthens the proposed method.

The proposed method is demonstrated in silicon using an
LNA chip [7] and a programmable analog neural network pro-
totyping chip [8]. Experimental results corroborate robustness
of the proposed analog performance locking method against
both brute-force and model approximation attacks.

The remainder of the paper is structured as follows. In
Section II, we discuss the threat model considered by our
locking method. In Section III, we discuss the role of biasing in
analog ICs and we introduce our neural network-based biasing
method for analog performance locking along with a metric
for evaluating its effectiveness. Our experimental platform and
our obtained results are presented in Section IV and Section V,
respectively, and conclusions are drawn in Section VI.

II. THREAT MODEL

In the threat model considered in this work, the adversary is
an unauthorized user who has gained illegitimate access to an

2019 IEEE 37th VLSI Test Symposium (VTS)

!

978-1-7281-1170-4/19/$31.00 ©2019 IEEE

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:24:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. (a) Proposed Function for Obfuscation (b) Performance VS. Bias

analog IC. For example, this could be a previously used and
recycled IC, or an IC possessing sensitive capabilities, such
as in military applications, which has ended up in the wrong
hands. The objective of the proposed method is to prevent the
unauthorized user from operating the illegitimately accessed
IC within its specifications, by requiring an analog key for
unlocking its performances. The adversary is aware of the fact
that a locking mechanism exists and is allowed to experiment
non-invasively with key values. The adversary is also allowed
to legitimately acquire another copy of this IC and its key.

The proposed method is not intended towards protecting
the intellectual property (IP) of a design from unauthorized
overproduction, cloning or lock removal by an untrusted
foundry which has access to the layout of the design.

III. PERFORMANCE LOCKING IN ANALOG ICS

In this section, we first discuss the importance of biasing for
proper operation of an analog IC and we explain why these
biases are insufficient to serve as keys. We, then, introduce
the proposed analog performance locking method along with
a metric for assessing its effectiveness.

A. Analog Performance Locking Through Biases

In an analog circuit, biasing is the action of providing
carefully selected voltages or currents, which are called biases,
at various nodes and terminals of the circuit. During the
design process, bias values are determined along with other
parameters such as transistor dimensions, to produce the
desired performance. As shown in Figure 1(b), provision of the
chosen biasing values brings the circuit to its operating point,
wherein it exhibits its optimal performance. A small change
in the biases will drive the circuit out of its operating point,
thereby causing performance degradation or even specification
failure. In other words, the provided biases are a critical part
of the design since they can effectively vary the performance
of the circuit [7].

A straightforward idea for locking the performance of an
analog IC would be to treat the biases as the key, since only
the correct bias values would result in acceptable performance.
Such an approach, however, is relatively easy to defeat.
The reason for this is that the relation between biases and
performance are fairly easy to learn through model approxi-
mation algorithms, such as Powell′s method [9] and Gradient
Minimization [10]. Indeed, as we will show experimentally
in Section V.A, such methods require a very small number

Analog IC

On-Die
Neural Network

Bufferm Biases

Analog Key

n

Access Biases
for Training

m

Fuse

Vdd

Fig. 2. General Architecture of the Proposed Locking Method

of samples to deduce the optimal biases for a circuit. Fur-
thermore, an experienced designer can estimate the proper
biases and assist model approximation attacks by initializing
the sampling process closer to the operating point. Therefore,
using biases as keys is a weak performance locking strategy.

B. Proposed Analog Performance Locking

Idea & Architecture: In this work, we propose a method for
locking the performances of an analog IC by preventing direct
application of biases. Rather, in order to provide the biases
required for specification-compliant IC operation, we rely on
an on-die analog neural network, as shown in the architecture
depicted in Figure 2. The analog neural network is trained
to implement a function1 similar to the one shown in Figure
1(a). In essence, the trained analog neural network serves as
a lock, while its analog input serves as the key. A correct pair
of lock and key results in generation of the biases needed for
bringing the IC to its operating point. Any other combination,
however, should result in biases for which the performance of
the IC does not meet its specifications. Moreover, incorrect
combinations should minimize leakage of any information
that could be leveraged by model approximation algorithms
to discover the operating point of the analog IC.

Lock Implementation Protocol: The proposed method seeks
to protect against unauthorized use of a circuit by anyone other
than the legitimate end-user. To this end, before distributing
an IC to its end-user, our method programs the analog neural
network to accept a specific analog key. The model learned by
the neural network is permanently stored on-chip through the
use of analog FGTs which act as permanent synapse weight
storage. The analog key is, then, provided to the end-user along
with the IC. The end-user must apply this key to the IC in order
to provide the correct biases and unlock the IC performance.
Given the continuous nature of the analog input space and the
fact that the neural network model is programmed after chip
fabrication, each IC can be programmed to accept its own
unique key.

Key Application & Storage: Several options exist for ap-
plying and storing the analog key to unlock an IC. The

1Neural networks are powerful machine learning entities which, based
on the universal approximation theorem, can approximate any continuous
function.

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:24:32 UTC from IEEE Xplore. Restrictions apply.

simplest approach is to directly provide these analog values
through external pins. Another approach, similar to locking
methods for digital ICs, is to use static random-access memory
(SRAM) cells alongside a digital to analog converter (DAC)
and sample-&-hold circuits with a refresh mechanism to com-
plete the scheme. Alternatively, the analog key can be directly
programmed as charge in analog floating gate transistors at
power-up and removed at power-down. While analog FGTs are
more challenging to program, this solution keeps the proposed
method entirely in the analog domain, and eliminates the need
for SRAM, DAC and sample-&-hold circuits.

Attack Resistance: The ability of the proposed method to
withstand attacks is based on four facts. First, the size of
the analog input space and the time-consuming process of
applying and evaluating candidate analog keys prohibits brute
force attacks. Second, due to the high entropy of the function
learned by the neural network (see Figure 1(a)), when incorrect
analog keys are applied the resulting analog IC performance
does not provide guidance towards the correct key. Third, as
mentioned earlier, each IC has its own key, hence key sharing
is not a viable attack. Lastly, as shown in Figure 2, once the
neural network is programmed, observability of its output (i.e.,
bias voltages) which is needed for the purpose of training, is
eliminated by blowing a fuse.

C. Attack Difficulty Metric

In order to quantify the difficulty encountered by an attacker
while attempting to deduce the analog key, we need to define
an appropriate metric. Using Figure 1(a) as a reference, let Ns

be the magnitude of the space wherein the analog key draws
values from. Also, let Np be the number of options in Ns which
result in biases that either bring the circuit to its operating point
or provide significant information (e.g., performances close
to the specifications) which can assist model approximation
attacks. Then, the probability of deducing the analog key can
be quantified as:

metric = Np/Ns (1)

IV. EXPERIMENTAL PLATFORM

To demonstrate the proposed analog performance locking
method, we emulated its implementation using an experi-
mental platform which consists of two custom-designed and
fabricated ICs, namely an LNA chip with three bias voltages
and an analog neural network prototyping chip. Details of
these two ICs are provided below.

A. LNA with Bias Voltages

The LNA, which is the circuit that we want to protect
against unauthorized use, was designed and fabricated in
GlobalFoundries’ 130nm RF CMOS process. Its schematic
and specifications are shown in Figure 3. It is a cascode LNA
with inductive source degeneration that consists of only three
transistors. M1 is used as a common source transistor, M2 is a
common gate transistor whereas M3 is used for bias purposes.
Transistors M1, M2 are biased by using voltages Bias1 and
Bias2 respectively while Bias3 is the supply voltage of our

LNA. These three bias voltages must be set to exact values in
order for the LNA to operate within its specification limits
[11]. In the proposed analog performance locking method,
instead of being supplied externally, these three bias voltages
must be generated by an analog neural network if and only if
the correct analog values (i.e., key) are provided at its inputs.

B. Analog Neural Network Platform

The analog neural network, which is used to lock the per-
formances of the LNA, is implemented by using our custom-
designed neural network experimentation platform. The block
diagram of the chip, which was fabricated in TSMC’s 350nm
process [8], is shown in Figure 3. The core is a reconfigurable
30x20 array of synapses (S) and neurons (N) operating in
the subthreshold region and featuring sub-µW power con-
sumption. The synapse circuit implements a four-quadrant
multiplication function whereas the neuron circuit performs
a tanh-like nonlinear activation function. Both circuits were
designed by applying the translinear principle with FGTs being
an integral part of the design. The FGTs have a dual role.
They are used as compact nonvolatile analog weight storage
solution after the training process is completed, providing up to
10-bits of precision for each stored weight. Additionally, they
provide a reconfiguration mechanism for supporting various
neural network topologies.

Apart from the core, three peripheral circuits provide sup-
port for the training and operation of the neural network. The
differential transconductors (GM) accept differential voltage
signals as inputs and convert them into differential currents, as
required by the core. The current-to-voltage converter (ITOV)
facilitates the reading of internal currents such as weights
and neural network responses. Finally, the digitally-controlled
current source (DCCS) generates high precision target currents
(Iprog) for updating the values of weights during training.
The DCCS is only used for programming. Therefore, in
the proposed analog performance locking solution, it is not
integrated on every die, as the end-user of the locked IC
does not need to reprogram the neural network2. Instead, this
is implemented on the instrumentation that will be used to
program the fabricated devices prior to shipping them to the
end-user.

For the purpose of locking the LNA performances, we
used the multilayer perceptron (MLP) model. The MLP is
a feed-forward neural network wherein each neuron receives
connections only from inputs or previous layers. In this work
a two-layer MLP neural network was trained to act as the
lock. The first layer, which is called hidden layer, receives
the inputs, i.e., the analog key values, as well as a bias. The
number of hidden neurons reflects the learning capacity of the
model. The second layer, which is called output layer, receives
the outputs of the first layer and a bias, and produces the
network outputs (in our case, the three bias voltages needed by

2In fact, to prevent the unauthorized end-user from doing so, a similar
fuse-based solution to the one described in section III(B) for preventing
observability of the neural network outputs, is applied to prevent retraining
of the analog neural network once it is trained.

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:24:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Experimental Platform for Emulating the Proposed Analog Performance Locking Method

the LNA). The contribution of each connection to the output
response is determined by the synaptic product of the local
weight value and the corresponding input or hidden neuron
output. The sum of the synaptic products is then applied to
the neurons. In order to train the MLP neural network (i.e., to
adjust its synaptic weights), a chip-in-the-loop training strategy
along with a hardware-customized version of a resilient back
propagation algorithm are employed [12].

Overall, our experimentation platform is an accurate emu-
lation of the proposed analog performance locking solution.

V. RESULTS

Based on the aforementioned platform, we conducted sev-
eral experiments seeking to elucidate three aspects of bias-
based analog performance locking: (i) the inadequate security
offered by using biases directly as analog keys, (ii) the
effectiveness of the proposed method against both brute force
and model approximation attacks, and (iii) the impact of bias
obfuscation on the performances of the LNA.

A. Analog Performance Locking Through Biases

The effect of the three bias voltages on the fabricated LNA
performance was studied by measuring the four S-parameters
(S11, S12, S21, S22) for various combinations of these biases.
The measured results are shown in Figure 4. In the plot of each
of the four S-parameters, the three axis represent the three bias
voltages and the color-coding represents the value of the S-
parameter, as indicated in the corresponding color-bar. Based
on these measurements, specification-compliant operation of
the LNA is achieved only when (Bias1, Bias2, Bias3) = (1.35,
2.55, 2.25)V. For this specific combination of bias voltages
(i.e., operating point) the performance of the LNA is optimized
and corresponds to (S11, S21, S12, S22) = (-8, 11.2, -31.4,
-7.5)dB. For any other combination of bias voltages, at least
one S-parameter fails its specifications.

TABLE I
ABILITY TO LEARN RELATION BETWEEN BIASES AND PERFORMANCES

Powells method Gradient Minimization

Success Rate 100% 100%

Number of Samples 74.5 8

The exact values needed for three bias voltages in order for
the LNA to be specification-compliant could be thought of as
a key for locking its performances. However, such a solution
would be very weak, due to the strong correlation between
the LNA performances and the values of voltage biases.
Indeed, an attacker can exploit this correlation and use model
approximation algorithms to quickly deduce the needed bias
voltage values for specification-compliant LNA operation. To
demonstrate this point, we used two such algorithms, namely
Powell′s method [9] and Gradient Minimization [10], and we
report the results in Table I. Starting from a randomly chosen
set of initial values, both algorithms can successfully find
the optimum bias voltages within a relatively small number
of sampling points. Among the two algorithms, conjugate
gradient minimization is much more effective, since it requires
on average only 8 sampling points, confirming our conjecture
that the direct use of bias voltages as keys is a very weak
analog performance locking option.

B. Neural Network-Based Biasing

We now proceed to evaluate the effectiveness of the pro-
posed method for analog performance obfuscation using neural
network-based biasing. As explained in Section III, in order to
act as an effective lock, the neural network must be trained to
implement a function that follows the general form shown in
Figure 1(a). In this experiment, the neural network was trained
to approximate the impulse function shown in Figure 5.

This impulse function was chosen because, as we explain
below, it minimizes the information available to an attacker

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:24:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Effect of Three Bias Voltages on LNA Performance

for staging model-based attacks. Specifically, when given the
correct analog key at its inputs, the trained neural network
generates the desired LNA bias voltages at its output. However,
for any other input value, the trained neural network generates
the exact same incorrect LNA bias voltages. This, in turn,
results in non-compliant LNA performances, which do not
vary as a function of the incorrect key values. As a result,
model approximation algorithms, such as Powell′s method [9]
and Gradient Minimization [10] cannot be applied.

We implemented a continuous approximation of the impulse
function shown in Figure 5 using our analog neural network
prototyping platform, as well as its equivalent software ver-
sion using Matlab’s neural network toolbox for comparison
purposes. In each case, an MLP network with one hidden
layer and, depending on the number of inputs, up to 10 hidden
neurons was sufficient to implement the impulse function. To
train the neural networks, we generated appropriate synthetic
data-sets, which are dense around the correct key value and
sparser as we move further away from this peak. The neural
network has differential inputs whose range spans from -
3.3V to 3.3V with a step-size of 2mV, corresponding to 3300
possible key options for each input. Evidently, the key space
grows quickly as a function of the number of inputs, making
brute-force attacks infeasible.

A perfectly trained neural network would only accept the
exact values of the key as correct. However, due to training
limitations, the software implementation may also accept a few
additional values around the correct key. This phenomenon
may be further exacerbated in the hardware implementation
due to non-idealities. Therefore, in order to evaluate the quality
of the lock implemented by the trained neural network, we
use the metric described in Section III.C. Table II reports our
results for software and hardware neural network implemen-
tations with up to three inputs.

For the software version of the neural network, using a 1-
input key results in only 3 out of the 3300 possible values
being accepted (i.e., generating 1.35V, 2.25V, and 2.55V for

Fig. 5. Impulse Function for Bias Voltage Obfuscation

TABLE II
KEY GUESSING PROBABILITY METRIC FOR PROPOSED METHOD

Version 1 input 2 inputs 3 inputs

Software 9.1e−4 ≈ 2−10 8.3e−7 ≈ 2−20 1.1e−9 ≈ 2−30

Hardware 3.0e−2 ≈ 2−5 1.1e−3 ≈ 2−9 5.2e−5 ≈ 2−14

the three bias voltages at the output of the neural network),
while all other key values result in a constant output (i.e., 0.8V,
0.8V, and 0.8V). In essence, this implies that the probability of
guessing the correct key, as expressed by the metric of Section
III(c), is approximately 2−10, which makes it equivalent to a
10-bit digital key. When the number of neural network inputs
increases to 2, 9 key values among the approximately 11M op-
tions are accepted, corresponding to a metric value of 2−20, or
the equivalent of a 20-bit digital key. This trend continues, with
the metric value becoming 2−30, or the equivalent of a 30-bit
digital key for the trained 3-input software neural network. In
the case of hardware, a similar exponential growth is observed
in our experiments for 1-, 2-, and 3-input networks. However,
due to hardware non-idealities and resolution limitations of the
peripheral circuitry [8] that is used to train the neural network,
the equivalent number of digital key bits is approximately half
of the software version value.

In Figure 6, we project the observed trends for both the
software and hardware neural network implementations as
a function of the number of inputs. In the digital domain,
common rule of thumb is that an 80-bit key space is virtually
unbreakable through brute force attacks. As can be observed,
in the case of software neural network implementation, 8
inputs are sufficient to reach this security level, while for the
hardware version, 16 inputs are required. Nevertheless, we
should point out that in analog circuits, due to settling and
measurement complexity, evaluating effectiveness of a chosen
bias voltage option takes much longer than in their digital
counterparts. Therefore, it is likely that a much smaller number
of key inputs will suffice to match the time required for a brute
force attack on an 80-bit digital key.

C. Bias Obfuscation Impact on LNA Performances

To further demonstrate the effectiveness of neural network-
based biasing in locking the performances of the LNA, Figure
7 reflects the value of the second bias voltage (i.e., Bias2)
for the entire input space of a trained 2-input hardware neural
network. As explained in the previous subsection and as shown
in Table II, the percentage of points around the correct key
value which is accepted by this version of the trained neural
network (i.e., which produces Bias2=2.55V) is 2−9. Similar

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:24:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Projection of Key Space as a Function of Number of Inputs

figures can be plotted for the other two bias voltages. In Figure
7, we highlight three points (i.e., P1, P2, P3) in the key space
in order to explain the impact of the proposed locking on the
LNA performance, which is summarized in Table III. If Key P1
is applied, the neural network will generate three bias voltages
of 0.8V, for which the LNA will fail its specifications, i.e., its
performances will be successfully locked. the vast majority of
points in the input key space belong to this category. If the
correct key P3 is applied, the neural network will produce the
desired bias voltages of 1.35V, 2.55V, and 2.25V, for which the
S-parameters will be within their specifications and the LNA
will be successfully unlocked. Only one point in the input key
space belongs to this category. Ideally, in a perfectly trained
neural network, these would be the only two categories of
points. However, due to training non-idealities, there exists
a third category which is represented by point P2. For a
small number of points around P3, the neural network will
generate bias voltages which will result in S-parameters that
may still not meet the LNA specifications, but are sufficiently
different than the S-parameters of P1. Such points can serve as
clues regarding the direction in which a model approximation
algorithm should search; therefore, we consider points such as
P2 as successful keys for unlocking the LNA performances.

VI. CONCLUSIONS

We presented a method for locking the performances of an
analog IC and preventing its unauthorized use, by controlling
its biasing through an analog neural network. The neural
network is trained to generate the required bias voltages if and
only if the correct analog key is provided at its inputs, while for
any incorrect key value it generates incorrect biases for which
the circuit fails its specifications. Since the neural network is
programmed after fabrication, the key can be individualized
per customer or even per device to further enhance security.
To demonstrate the proposed analog performance locking
method, we developed an experimentation platform which
comprises two fabricated ICs, an LNA and an analog neural
network prototyping chip. Experimental results confirmed the
effectiveness of the proposed method against brute force and
model approximation attacks with even a small number of
analog key inputs. To our knowledge, this is the first method

Fig. 7. Function Learned by 2-Input Hardware Analog Neural Network

TABLE III
IMPACT OF PROPOSED LOCKING ON LNA PERFORMANCES

Points Status Biases (V) Performance (dB)
S11 S21 S12 S22

P1 locked 0.8, 0.8, 0.8 -6.5 0.3 -34.9 -4.8

P2 in-between 1.05, 1.5, 1.35 -6.9 8.1 -33.9 -5.6

P3 unlocked 1.35, 2.55, 2.25 -8 11.2 -31.4 -7.5

employing analog keys for the purpose of locking analog IC
performances.

ACKNOWLEDGMENT
This research has been partially supported by National Sci-

ence Foundation (NSF) and Semiconductor Research Corpora-
tion (SRC) through tasks 1527460 and 2625.001, respectively.

REFERENCES

[1] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy
of integrated circuits,” in Proceedings of the conference on Design,
automation and test in Europe, 2008, pp. 1069–1074.

[2] R. S. Chakraborty and S. Bhunia, “Hardware protection and authentica-
tion through netlist level obfuscation,” in Proceedings of Int. Conference
on Computer-Aided Design, 2008, pp. 674–677.

[3] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing ic piracy
using reconfigurable logic barriers,” IEEE Design & Test of Computers,
vol. 27, no. 1, 2010.

[4] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Proceedings of the 49th Annual Design Automa-
tion Conference, 2012, pp. 83–89.

[5] V. V. Rao and I. Savidis, “Protecting analog circuits with parameter
biasing obfuscation,” in Test Symposium (LATS), 18th IEEE Latin
American, 2017, pp. 1–6.

[6] J. Wang, C. Shi, A. Sanabria-Borbon, E. Sánchez-Sinencio, and J. Hu,
“Thwarting analog ic piracy via combinational locking,” in Test Confer-
ence (ITC), IEEE International, 2017, pp. 1–10.

[7] Y. Lu, K. S. Subramani, H. Huang, N. Kupp, K. Huang, and Y. Makris,
“A comparative study of one-shot statistical calibration methods for
analog/RF ICs,” in in Test Conference (ITC), IEEE International, 2015,
pp. 1–10.

[8] D. Maliuk and Y. Makris, “An experimentation platform for on-chip
integration of analog neural networks: A pathway to trusted and robust
analog/RF ICs,” IEEE transactions on neural networks and learning
systems, vol. 26, no. 8, pp. 1721–1734, 2015.

[9] M. J. Powell, “An efficient method for finding the minimum of a function
of several variables without calculating derivatives,” The computer
journal, vol. 7, no. 2, pp. 155–162, 1964.

[10] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for
solving linear systems. NBS Washington, DC, 1952, vol. 49, no. 1.

[11] G. Volanis, D. Maliuk, Y. Lu, K. S. Subramani, A. Antonopoulos, and
Y. Makris, “On-die learning-based self-calibration of analog/RF ICs,” in
VLSI Test Symposium (VTS), IEEE 34th, 2016, pp. 1–6.

[12] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The rprop algorithm,” in Neural Networks,
IEEE International Conference on, 1993, pp. 586–591.

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:24:32 UTC from IEEE Xplore. Restrictions apply.

