
Hardware-based Real-time Workload Forensics
via Frame-level TLB Profiling

Yunjie Zhang, Liwei Zhou and Yiorgos Makris
Electrical and Computer Engineering Department, The University of Texas at Dallas, Richardson, TX 75080, USA

E-mail:{yxz153430, lxz100320, gxm112130}@utdallas.edu

Abstract—We propose a hardware-based solution for perform-
ing real-time workload forensics that enables identification of a
process while it is being executed. More specifically, we divide
execution flow of a process into consecutive frames and we
extract descriptive features related to the Translation Lookaside
Buffer (TLB) utilization profile for each such frame. These
features are then processed through trained machine learning
models to analyze program behavior and identify workload
at the granularity of a process. Unlike previous research on
workload forensics that performs ex post facto analysis based on
the complete process execution profile, this method continuously
analyzes the segmented workload execution flow; thus, it does
not require knowledge of process creation, switch, and termi-
nation timestamps. Furthermore, as compared with software-
based workload forensics solutions, whose data logging mech-
anism may be compromised by software attacks, the proposed
hardware-based logging mechanism does not rely on services
from the operating system (OS) or high-level applications and
is, therefore, inherently immune to software tampering. The
proposed workload forensics method was evaluated using a
Linux OS loaded on Spike, an open-source RISC-V simulator.
Experimental results using the Mibench benchmark suite indicate
an overall identification accuracy of 98.9% with practicable
logging overhead.

I. INTRODUCTION

As our society relies increasingly on network services and
online applications, sensitive data are inevitably exposed to
the threat of cyberattacks. Malware is malicious software that
takes advantage of vulnerabilities in system design to bypass
security policies and compromise defense mechanisms, in
order to launch Denial-of-Service (DoS) attacks or steal private
data. In a recent example, Spectre [1] and Meltdown [2] were
able to violate the memory isolation security property and
to access private information without possessing appropriate
privileges. Accordingly, methods for monitoring program exe-
cution and identifying suspicious behavior are of great value.

Generally speaking, forensic analysis collects and analyzes
information in order to identify or reconstruct the behavior
of a program executed in the past and can be categorized
into software-based methods and hardware-based methods.
Numerous forensic investigation methods, such as EnCase [3]
and FTK [4], have been developed in the former category.
These methods utilize memory data images to analyze pro-
gram control flow, while other methods focus on system call
sequences to perform intrusion detection [5], [6]. However,
software-based methods could be the target of a software
attack themselves. For example, sensitive variables used by
forensic programs are stored in a memory area which should

be inaccessible by other programs; yet attacks such as the
recently-developed Spectre could provide attackers a way to
compromise such barrier.

On the other hand, since software has to be executed on
hardware, the actual traces created during program execu-
tion cannot be hidden from the hardware. Based on that
premise, the feasibility of hardware-based forensic inves-
tigation methodologies which collect data directly through
hardware has also been considered [7], [8]. For instance, per-
formance counter-based methods that monitor system events
and instruction flow have been effective in on-line malware
detection [8]. However, counting mechanisms which monitor
the execution of every instruction and every system event result
in a relatively high trace logging rate. Alternatively, the effec-
tiveness of workload forensics which perform ex post facto
analysis based on compacted data gathered from a complete
process profile has also been investigated [7], [9]. While such
methods reduce drastically the required data logging rate, they
cannot respond promptly to an on-going intrusion until after
a malicious processes has completed execution.

In order to address the weaknesses discussed above, we
propose herein a hardware-based workload forensics method-
ology which (i) depends on information exclusively collected
in hardware, and (ii) enables real-time process identification
at any point during its execution flow and does not require
knowledge of process creation, switching, and termination
timestamps. To achieve these objectives, we introduce a novel
approach that uses system mode switching as a flag to divide a
process into separate frames, More specifically, upon encoun-
tering a system mode switching, a new frame is created for the
execution flow of a process, thereby dividing the process into
consecutive frames. Descriptive features can then be extracted
for each such frame and further processed through machine
learning algorithms for the purpose of process identification.

To contain the data logging overhead, we follow the suc-
cessful paradigm of [9], wherein features related to Translation
Lookaside Buffer (TLB) profiles are used. Moreover, besides
performing the analysis in real-time rather than a posteriori,
we also introduce a majority voting strategy which combines
individual predictions generated per frame, in order to improve
process identification accuracy at the expense of minor latency
(i.e., a few frames rather than a single frame). The proposed
method was evaluated on Spike, an open source RISC-V
architectural simulator, using the Mibench benchmark suite
on a Linux OS. Experimental results reveal an overall process

2019 IEEE 37th VLSI Test Symposium (VTS)

!

978-1-7281-1170-4/19/$31.00 ©2019 IEEE

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:25:13 UTC from IEEE Xplore. Restrictions apply.

identification accuracy of 98.9% based on single frame predic-
tion and 99.7% when majority voting is used. Calculations of
data processing latency and frame run-time are also provided
to demonstrate feasibility of our real-time solution.

The rest of the paper is organized as follows. Related work
is discussed in Section II. Section III introduces our method
and provides implementation details. Section IV presents re-
sults of our experiments in process identification and outlier
detection and conclusions are drawn in Section V.

II. RELATED WORK

In this section, we briefly introduce the state-of-the-art in
forensic analysis methods, including both software-based and
hardware-based approaches.

A. Software-based approaches
Various data-centric software analysis methods have become

standard tools for forensic investigation in industry [10]. For
instance, EnCase [3], [11] ensures data integrity and enables
data recovery by creating images for disk data. Other commer-
cial tools, such as FTK [4], employ similar strategies. How-
ever, such methods exhibit limitations in processing capability,
as storage capacity of electronic devices and data volumes
have continued to grow rapidly over the last decade [10], [12].
Alternatively, program-centric methods focus on analyzing
program behavior based on primitives such as system calls and
system events. Several studies employ statistical analysis on
system call sequences and/or arguments to perform intrusion
detection [5], [6], [13].

B. Hardware-based approaches
Similar program-centric methods can also be found in

hardware-based forensic solutions [14], [15]. They collect
architecture-level information, such as CPU events, memory
address references, instruction flow, etc., in order to perform
malware detection and workload identification [16], [17].
For example, performance counters have been successfully
used for detecting variants of malware from known malware
signatures [8], [18]. Nevertheless, such ways of monitoring
system events may lead to excessive complexity in CPU design
and high data logging rate. In a different direction, ex post
facto methods have proven effective in performing workload
forensics and malware detection using features which are
extracted and compacted from complete process execution
profiles, resulting in significantly lower logging rate [7], [9].
Nevertheless, such methods are only able to detect software
intrusions after an entire process has finished execution.

In addition, hardware forensics require process identification
explicitly at the circuit level, without relying on any OS-
level data or services. This, in turn, leads to the well-known
semantic gap problem. Earlier work on process identification
resolves this problem by using architectural conventions, such
as the fact that the CR3 register of an x86 machine can serve
as a proxy for process ID as it stores the base address of the
page table of a process [19]. Moreover, any change in the
value of the CR3 register corresponds to crucial events, such
as process creation, switching, and termination.

Logging Module Frame Division
Feature

Extraction

Software

Hardware

experiment
objective

analysis
module

Figure 1: Overview of the proposed system architecture

III. METHODOLOGY

The objective of the proposed method is to develop a
hardware-based workload forensics system that can identify a
process in real-time, at any point during its execution. Figure
1 shows the overview of the proposed system architecture.
A hardware-based logging module collects data directly from
low-level hardware. To enable real-time process identification,
our approach exploits a frame-division mechanism which splits
the instructions into frames and continuously extracts features
for each frame from the data logged by the aforementioned
module. Vectors of these features are continuously off-loaded
for each frame to a separate secure environment, where a soft-
ware analysis module is used to perform process identification
using a machine learning-based strategy which we will discuss
in the following sections.

A. Logging mechanism

In order to reduce logging overhead, rather than contin-
uously monitoring instruction execution flow, we rely on
profiling instructions which cause a TLB miss. TLB in modern
computer architecture is essentially a cache which stores the
results of recently-used translations of virtual to physical
addresses. Prior research shows that the typical TLB miss rate
in software programs is about 0.01-1% [20], implying that
this profiling method will induce lower logging overhead to
our forensics system, as compared with performance counter-
based methods which monitor and log all changes of CPU
status at the instruction level. TLBs can be divided into two
parts, namely instruction TLB (iTLB) and data TLB (dTLB).
In our study, we only focus on the profile of instruction
flow-related iTLB misses, so we discard dTLB information.
In addition, our analysis module only considers user-space
instructions and disregards system-mode instructions, as the
former typically reflect better the program behavior-related
information. In order to identify switching between user-mode
and system-mode, we leverage the convention that in 64-bit
Linux OS virtual addresses lower than 0x0000800000000000
are regarded as user space.

Our analysis module uses features extracted from data
logged during frames occurring at any point during execution
of a process. Therefore, knowledge of process creation, switch-
ing, and termination timestamps is not required. However,
for the purpose of training and testing our machine learning

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:25:13 UTC from IEEE Xplore. Restrictions apply.

kernel space inst. 0
……

user space inst. 0
user space inst. 1
……
user space inst. n

kernel space inst. 0
……

user space inst. 0
user space inst. 1
……
user space inst. m

kernel space inst. 0
……

user space inst. 0
user space inst. 1
……
user space inst. p

kernel space inst. 0
……

gap sequence

gap sequence

gap sequence

Instruction flow

user space inst. 0
user space inst. 1
……
user space inst. n

pc
pc
……
pc

sptbr
sptbr
……
sptbr

user space inst. 0
user space inst. 1
……
user space inst. m

pc
pc
……
pc

sptbr
sptbr
……
sptbr

type 18 inst. N/A N/A

type 18 inst. N/A N/A

user space inst. 0
user space inst. 1
……
user space inst. n

pc
pc
……
pc

sptbr
sptbr
……
sptbr

empty slot N/A N/A

…… …… ……

frame i (fed to feature extraction module)

frame i+1 (being constructed)

Figure 2: Frame construction in hardware

model, features need to be labeled with a corresponding
process ID. Similar to the CR3 control register of the x86
architecture, RISC-V provides a register sptbr that holds
the physical page number of the root page table and an
address space identifier. This naturally offers a solution to this
problem, because any change of value in sptbr corresponds
to a context switch in the OS. By logging instructions along
with their sptbr value, we essentially label them with a corre-
sponding process ID, which establishes a semantic connection
between hardware-level instructions and the workload to be
reconstructed. The data that is logged during process execution
includes three parts:

1) iTLB miss instructions: instructions that cause iTLB
miss, including their operator and operands.

2) sptbr: the values seen by this register, which correspond
to context switches and can be used as process IDs.

3) program counter: the values seen by the program
counter, which can be used to distinguish user-space
instructions from kernel-space instructions.

B. Frame division

Our workload forensic analysis is performed using features
extracted at the granularity of a single frame. To simplify
frame construction, we use a uniform size for all frames, i.e.,
frame size. In order to explain how workload is divided into
frames, in Figure 2 we introduce the concept of gap sequence,
which essentially encompasses all instructions causing a user-
level iTLB miss between two kernel-to-user mode switches.
Because the length of gap sequence may vary from 1 to a
large number greater than frame size, frames are constructed
in a queue-like manner. The instructions of a gap sequence
are pushed into the current frame if the gap sequence fits
entirely into the remaining space of the frame. Otherwise, the
current frame is padded with type 18 instructions (discussed
in Section III-C) and passed to the analysis module and a
new frame is generated. If a gap sequence is larger than the
frame size, then its instructions are used to construct as
many frames as possible, with completed frames passed to the
analysis module, until all instructions in the gap sequence have
been handled. This frame creation strategy does not require

any extra information about system events or any additional
capabilities of the logging mechanism.

C. Feature extraction

Feature extraction is critical for the next step of analysis,
as features are expected to reflect both order and content
of workload execution. Herein, we use as features the raw
instruction sequences of length frame size which cause user-
level iTLB miss, as captured in each frame. Typically, a 64-
bit RISC-V includes more than 200 types of operators and
operands, which makes the feature space overly large for
hardware implementation of the trace collection module. To
address this issue, we reduce the feature space by focusing
exclusively on operators and categorizing them into 18 types
based on semantics given by the RISC-V specification [21]:

1) ADD Op.: addition operation.
2) SUB Op.: subtraction operation.
3) MULT Op.: multiplication operation.
4) DIV Op.: division operation.
5) LOGIC Op.: logic operation (AND, OR, etc.).
6) SHIFT Op.: shift operation
7) LOAD Op.: data load operation.
8) STORE Op. : data store operation
9) BEQ Op.: take branch if equal.

10) BNE Op.: take branch if not equal to.
11) BGT Op.: take branch if greater than.
12) BLE Op.: take branch if less than.
13) JUMP Op.: Unconditional jump operation.
14) CSRR Op.: reading CSR operation.
15) CSRW Op.: writing CSR operation.
16) Floating Point ALU Op: floating point related arith-

metic or logic calculation.
17) Floating Point DATA Op.: floating point related data

manipulation.
18) Other Op.: operators not included in previous types and

instruction-extension related operators.
For each frame, a feature vector of frame size F.V.i = <
Op.0, Op.1, Op.2, ..., Op.frame size−1 > is extracted and a list
of vectors [F.V.0, F.V.1, ..., F.V.end] is collected from each
process. The value of frame size is a crucial parameter of
our method. On the one hand, since we use machine learning
for our analysis, a small-sized frame may have a negative
impact on the overall process identification accuracy. On the
other hand, a large-sized frame increases the complexity of the
analysis module, runs the curse-of-dimenionality danger, and
requires more hardware resources for the logged data. Thus,
in our study, we seek experimentally an optimal frame size
value that can balance performance and overhead.

D. Analysis module

Our analysis consists of three separate steps, i.e., frame
identification, majority voting, and outlier detection. As our
workload forensics is performed at the granularity of a single
frame, a basic frame identifier is required to perform multi-
class classification using the features extracted from each
frame, wherein each class corresponds to a single process.

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:25:13 UTC from IEEE Xplore. Restrictions apply.

…… proc. 0 proc. 0 proc. 1 proc. 2 proc. 1 proc. 1

…… proc. 0 proc. 0 proc. 1 proc. 1 proc. 1 …… ……

frame identification results

frame identification results after majority vote

Figure 3: A majority voting strategy example

Similar classification tasks can be found in research dealing
with word sequences, such as machine translation and speech
recognition. Two types of Recurrent Neural Networks (RNNs)
with gating units, namely Long Short-Term Memory (LSTM)
and Gated Recurrent Units (GRUs), have been developed to
address these tasks. While there is no significant difference
observed in the performance of these two models, GRUs-RNN
may be slightly advantageous in computational time [22]. As
a result, the latter model is used in our analysis module.

In order to further improve the accuracy of our forensics
method beyond the abilities of a single frame identifier, we em-
ploy majority voting after several frames have been processed.
Since process identification is taking place in real time using
a large number of successive frames, this approach assists
with suppressing sporadic frame prediction errors through the
decisions of neighboring frames, at the expense of a small
latency. An example is given in Figure 3, where a prediction is
given after 3 frames have been processed. In case of a tie, our
method picks the earliest frame identification. Additionally,
frames from unseen processes can be identified through outlier
detection. We leverage the fact that the sigmoid output layer of
our neural network returns a vector of probabilities of frame
classes. If a frame is from a process which has never been
seen in training, its prediction may not generate a dominating
likelihood in any one of the target classes. Herein, we utilize
this property of ambiguity to perform outlier detection. In our
experiments, we identify a minimum likelihood threshold that
needs to be exceeded in order to classify a frame as seen.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our process identification
method as well as its data logging overhead. Our experiments
are conducted on Spike, a RISC-V simulator configured to
work with the RISC-V 64-bit instruction set, on which we
install a 64-bit Linux 2.6 OS kernel with necessary applets.

A. Process Identification Performance

As workload for our experiments we select the MiBench
suite. However, due to the on-going development of the RISC-
V compiler library, some MiBench applications cannot be
compiled properly and, thus, are not included in our ex-
periments. Applications are executed with various arguments
and in random order so as to eliminate any possible bias
introduced by program execution order. Since the source code
of Spike is available online, it provides us with great flexibility
for natively implementing the data logging module and the
feature extraction module. Here, we embed an iTLB tracer
in the MMU class of the Spike simulator, in order to track
TLB accesses. Each time an iTLB miss occurs, it raises

Table I: Frame-level process identification results on RISC-V

application class training samples testing samples GRUs accuracy
overall 34367 24879 98.9%
crc 2557 1705 99.6%
fft 3225 2150 99.2%
qsort 3125 2084 99.4%
toast 3624 2428 99.4%
search 3676 2450 99.4%
bitcnts 2784 1864 98.7%
untoast 2670 1782 99.4%
dijkstra 2538 1692 98.4%
patricia 2857 1904 99.3%
basicmath 2934 1956 96.0%
bf 3576 2384 100%
susan 3704 2480 98.0%

a flag which prompts another modified function to log the
user-level instructions that cause iTLB misses along with the
corresponding program counter (PC) values before proceeding
with instruction execution. Also, in order to gather data for
calculating the needed logging rate, a counter is created in the
simulator to record the total number of instructions executed
while each frame is created. Data analysis and result evaluation
are performed with TensorFlow on Python 3.6.

In order to evaluate the accuracy of frame-level process
identification, we collected a dataset containing iTLB miss
profiles from a total of 71 processes. In this initial experiment
we used a frame size of 30 (as we discuss later, this
is the experimentally-observed optimal value) and observed
59,246 frames generated by our frame division strategy, each
of which was labeled with a corresponding process ID. For
each process, 60% of the samples were randomly selected as
our training set while the rest were used as our testing set.
The process identification results are shown in Table I. As
may be observed, the GRUs-RNN exhibits excellent process
identification performance, reaching an overall accuracy of
98.9%. Interestingly, these results reveal that our method not
only matches but also outperforms previous ex post facto
analysis methods such as [9], despite operating in real time and
utilizing a small fraction of the trace used by such methods.

To explore the impact of frame size on process identi-
fication accuracy, we conducted the same experiment while
varying the value of frame size between 16 and 34. The
results are shown in Figure 4, revealing that the overall process
identification accuracy starts to improve significantly once
frame size exceeds 22, yet flattens out once frame size
exceeds 30. Therefore, a frame size value of 30 is adopted
as our experimentally-observed optimal value.

B. Majority Voting Results

With the above results as our baseline reference point,
we proceeded to evaluate the added effectiveness that may
be obtained by employing a majority voting strategy across
multiple frames, rather than relying on a single frame for
identifying a process. To this end, we used the collected in-
order execution profile and applied this strategy for a range of
different latency values. Latency here refers to the number of
frames that we rely on for making a majority-based decision.

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:25:13 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Process identification accuracy vs. frame size

Figure 5: Process identification accuracy vs. latency

As shown in Figure 5 for the chosen frame size of 30,
when latency n is set to 7 the overall process identification
accuracy improves significantly, rising from 98.9% to 99.7%
once majority voting is applied.

C. Outlier Detection

In order to detect outlier (i.e., previously unseen) processes,
we utilize the information provided by GRUs-RNN with a
sigmoid output layer, which reflects the likelihood that a
given input stimulus (i.e., frame) belongs to certain known
classes. As we observed experimentally, for frames originating
from seen classes (i.e., processes) the likelihood that they
belong to the predicted class comes with a strongly dominating
value. However, for frames originating from previously unseen
classes, no class exhibits a dominant likelihood. An example
of likelihood distribution is shown in Figure 6 for each of the
above two cases. Based on this observation, we can screen
outlier processes by setting a minimum threshold for the
highest probability in the GRUs-RNN’s output vector. Any
frame for which no class likelihood exceeds this threshold
can, thereby, be deemed as not belonging to a known process.

We conducted multiple iterations of our experiment, each
time randomly selecting and excluding 25% of the classes
(i.e., processes) in the training set, while retaining them in the
validation set, thereby making them outliers (i.e., previously
unseen). As a threshold for accepting the highest likelihood
class of our GRUs-RNN, we selected 0.65, as this value gave

(a) Seen processes (b) Outlier processes

Figure 6: Probability distribution of top classes

Table II: Summary of FP/FN rates in outlier detection

test # No. of No. of FP rate FN rate
seen frames outlier frames

average 14.47% 7.95%
test 1 19501 5378 15.74% 6.96%
test 2 18137 5146 14.55% 8.46%
test 3 18940 5939 11.26% 9.90%
test 4 17632 6261 18.38% 5.57%
test 5 18097 6782 12.41% 8.87%

us experimentally the highest average F1 score1. Results from
5 random iterations with threshold 0.65 are summarized in
Table II. In our case, outliers are defined as the positive class
and the table provides the false positive rate (seen processes
classified as outliers) and false negative rate (outliers classified
as seen processes). As may be observed, this straightforward
method of outlier screening achieves reasonably accurate re-
sults, with average FP and FN rates of 14.47% and 7.95%,
respectively. While it is possible that more advanced machine
learning models may offer better outlier detection accuracy,
our method relies only on the existing analysis model and does
not require additional processing. This is particularly important
as any added overhead could jeopardize our ability to perform
this analysis in real-time and our future research direction of
implementing the entire workload forensics method on-chip.

D. Logging Rate

The amount of data per second that needs to be passed
to the analysis module for processing is referred to as the
logging rate. This metric can be used to describe the overhead
introduced by the logging and feature extraction modules.
High logging rate requires higher processing speed and po-
tentially a storage buffer if collected data cannot be processed
at the rate of arrival. To compute the logging rate of our
frame-level analysis, which extracts a feature vector of length
frame size, we assume a cycles-per-instruction (CPI) value
of 1 and we introduce the following variables:

Feature Size = log2(# of Op types)× frame size (1)

Logging Ratio = Feature Size × Frames per Cycle (2)

Logging Rate = Frequency × Logging Ratio (3)

In our experiments, the average number of executed cycles
while constructing a frame was 3.6× 105. For a frame size

1The F1 score is the weighted harmonic mean of the precision and recall
of the GRUs-RNN classification.

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:25:13 UTC from IEEE Xplore. Restrictions apply.

Table III: Analysis time summary

frame time identification majority vote transmission
(ms) (ms) decision (us) delay (us)
0.277 0.0679 1.46 less than 10

of 30, we can then calculate that Frames per Cycle is
2.78× 10−6. Assuming a 1.3 GHz clock frequency, as re-
ported in the RISC-V processor prototype of [23], our logging
rate is estimated to be about 66.1KB/sec, which is significantly
lower than that of performance counter-based methods [8].

E. Analysis Latency

In order to perform continuous process identification, the
time required for analyzing the collected data should not
exceed the time for constructing a frame, i.e., frame time.
Despite relying on an analysis module implemented in soft-
ware and running on a separate system where the logged
traces are passed to and analyzed by, real-time processing is
still feasible. Even without the use of any custom hardware
accelerator or GPU optimization, the time needed for analysis
is much less than frame time, as we explain below using the
parameters given in the previous section. Our average analysis
time is summarized in Table III and includes the average
time for frame construction, data transmission, frame-level
process identification and majority voting latency. The data
transmission delay is estimated based on the results described
in [24], where less than 10us of one-way latency is introduced
at a bandwidth of 2.1Gbps if TCP/IP ethernet is applied.

In our experiment, it took an average of 11.3 ms to obtain
the first frame-level process identification. At the same time,
the average time to complete execution of a process was 2.43
seconds, while the shortest process run time was 225 ms.
Evidently, even for the shortest running process, our method
provides results in an order of magnitude faster time, thereby
corroborating feasibility of real-time process identification.

V. CONCLUSION

In this work, we explored the feasibility of performing
hardware-based real-time workload forensics. Unlike software-
based approaches, the proposed method is immune to software
attacks as it does not involve data collected from the OS or
software applications. We extract features from instructions
causing an iTLB miss directly through hardware and we con-
struct frames which are then analyzed further through trained
machine learning models in order to identify the running
process. We demonstrated our method on a modified version
of a RISC-V architectural simulator, i.e., Spike, running the
Mibench benchmark suite on a 64-bit Linux OS. An overall
process identification accuracy of 98.9% is achieved when
frames of 30 user-level instructions causing iTLB miss are
used as features, while even higher accuracy of 99.7% is
achieved when a majority voting strategy is employed for
successive frames. Finally, we also demonstrated that the time
required for collecting and analyzing the traces is sufficiently
low for performing real-time workload forensic analysis.

REFERENCES

[1] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv:1801.01203, 2018.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,”
arXiv:1801.01207, 2018.

[3] S. Bunting and W. Wei, EnCase Computer Forensics: The Official
EnCase Certified Examiner, 2006.

[4] AccessData, “Forensic toolkit,” 2013. [Online]. Available:
https://accessdata.com/products-services/forensic-toolkit-ftk

[5] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using dynamic
and static behavioral models,” Pattern Recognition, vol. 36, no. 1, pp.
229–243, 2003.

[6] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host.” in
USENIX Security Symposium, vol. 4, no. 1, 2009, pp. 351–366.

[7] L. Zhou and Y. Makris, “Hardware-based workload forensics and
malware detection in microprocessors,” in International Workshop on
Microprocessor and SOC Test and Verification (MTV), 2016, pp. 45–50.

[8] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” in Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2013, pp. 559–570.

[9] L. Zhou and Y. Makris, “Hardware-based workload forensics: Process
reconstruction via tlb monitoring,” in IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2016, pp. 167–172.

[10] D. Ayers, “A second generation computer forensic analysis system,”
Digital Investigation, vol. 6, pp. S34–S42, 2009.

[11] S. Widup, Computer forensics and digital investigation with EnCase
Forensic v7, 2014.

[12] D. Quick and K.-K. R. Choo, “Impacts of increasing volume of
digital forensic data: A survey and future research challenges,” Digital
Investigation, vol. 11, no. 4, pp. 273–294, 2014.

[13] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through
system call sequence and argument analysis,” IEEE Transactions on
Dependable and Secure Computing, vol. 7, no. 4, pp. 381–395, 2010.

[14] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based
online malware detection: Towards efficient real-time protection against
malware,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 2, pp. 289–302, 2016.

[15] L. Zhou and Y. Makris, “Hardware-assisted rootkit detection via on-line
statistical fingerprinting of process execution,” in Design, Automation &
Test in Europe Conference (DATE), 2018, pp. 1580–1585.

[16] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-Ghazaleh,
and D. Ponomarev, “Hardware-based malware detection using low-level
architectural features,” IEEE Transactions on Computers, vol. 65, no. 11,
pp. 3332–3344, 2016.

[17] L. Zhou and Y. Makris, “Hardware-based on-line intrusion detection via
system call routine fingerprinting,” in 2017 Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017, pp. 1550–1555.

[18] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in International
Workshop on Recent Advances in Intrusion Detection, 2014, pp. 109–
129.

[19] S. T. Jones, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau et al.,
“Antfarm: Tracking processes in a virtual machine environment.” in
USENIX Annual Technical Conference, 2006, pp. 1–14.

[20] D. A. Patterson and J. L. Hennessy, Computer Organization and Design,
2007.

[21] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-V
instruction set manual, volume i: Base user-level ISA,” University of
California, 2011.

[22] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[23] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanović,
and K. Asanović, “A 45nm 1.3 GHz 16.7 double-precision gflops/w
risc-v processor with vector accelerators,” in 40th European Solid State
Circuits Conference (ESSCIRC), 2014, pp. 199–202.

[24] S. Larsen and B. Lee, “Survey on system I/O hardware transactions
and impact on latency, throughput, and other factors,” in Advances in
Computers, 2014, vol. 92, pp. 67–104.

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:25:13 UTC from IEEE Xplore. Restrictions apply.

