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Abstract—We propose a machine learning-based solution for
noise classification and decomposition in RF transceivers. Wire-
less transmitters are affected by various noise sources, each of
which has a distinct impact on the signal constellation points. The
proposed approach takes advantage of the characteristic disper-
sion of points in the constellation by extracting key statistical
and geometric features that are used to train a machine learning
model. The trained model is, then, capable of identifying the
noise source fingerprint, comprised by single or multiple noise
sources, for each affected device. Effectiveness of the model has
been verified using constellation measurements from a combined
set of simulated and actual silicon devices.

I. INTRODUCTION

Recent advancements in System-on-Chip (SoC) technolo-

gies have facilitated the fabrication of integrated single-chip

Radio Frequency (RF) transceivers for various wireless appli-

cations. While advanced technology nodes enable production

of devices that are more powerful and yet have a smaller

form factor, operation of such devices is more susceptible to

process, voltage and temperature (PVT) variations. As a result,

the device operation is more likely to deviate from its optimal

point, resulting in performance degradation and yield loss.

Cartesian transmitters, which are commonly referred to as

In-phase Quadrature (IQ) transmitters, are widely used in mod-

ern wireless systems such as point-to-point radios, broadband

communication systems, cellular, etc. Figure 1 shows the block

diagram of a typical Cartesian transmitter. When fabricating

such a transmitter topology using the latest technology nodes,

the individual blocks in the transmitter chain are susceptible

to the impact of process variation. As a result, the RF front-

end of practical wireless devices can be affected by various

impairments, resulting in quality degradation of the transmitted

signal. Therefore, several solutions have been proposed in the

past to improve performance and yield of fabricated wireless

devices [1]–[6]. These solutions can be broadly classified into

(i) post-production calibration and (ii) digital pre-distortion.

Post-production calibration is performed on Automated Test

Equipment (ATE) which measure the performances of each

device under test (DUT). When significant deviations are

detected, calibration techniques are used to tune the de-

vice performances within their respective specification limits.

Specifically, performance-control knobs present in the RF front

end of each DUT are adjusted and the corresponding knob

settings are stored on-chip in a non-volatile memory and used

during device operation.
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Fig. 1: Block diagram of an IQ transmitter

On the other hand, digital pre-distortion can only be per-

formed in wireless devices that have a built-in loop-back

receiver. This correction technique takes advantage of the

additional receiver present in the device to down-convert and

decode the transmitted messages. This allows the wireless

device to observe the impairments present in its hardware and

appropriately compensate the baseband IQ signals to cancel

out the effects of the impairments. This solution is widely used

in wireless devices that require periodic in-field calibration to

self-correct performance drift.

Due to the high cost of incorporating a full loop-back

receiver and the corresponding calibration logic on-chip, most

wireless devices use post-production calibration as a means

of correcting noise impairments. Existing calibration solutions

use observation parameters such as Error Vector Magnitude

(EVM) and Bit Error Rate (BER) to characterize the impact

of the various noise impairments. While these parameters

provide an overview of the signal quality, they do not provide

the necessary information to uniquely attribute the observed

performance deviation to the corresponding impairment(s).

To this end, in this work, we propose a machine learning-

based noise classification and decomposition technique for

RF transceivers. The proposed method enables the unique

identification of the impairments that affect the transmitter

and predicts the corresponding magnitude of each such noise

source. Effectiveness of the proposed approach has been eval-

uated using constellation measurements from a combination

of simulated and actual silicon devices.

The remainder of this paper is organized as follows. In

Section II, we discuss the impact of noise impairments on the

performance of a Cartesian transmitter. Existing techniques for

correcting these noise impairments are presented in Section III.

The proposed approach is introduced in Section IV, where we

address the feature extraction and implementation details of

the machine learning-based model. Then, in Section V, we in-
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Fig. 2: IQ transmitter with impairments

troduce a simulation model that was constructed for generating

synthetic devices, which were used along with measurements

from actual silicon devices to evaluate the performance of

the proposed noise classification and decomposition technique.

Finally, conclusions are drawn in Section VI.

II. IMPAIRMENTS IN A CARTESIAN TRANSMITTER

Cartesian transmitters have gained popularity in modern

wireless devices due to their image rejection capability, power

efficiency and ease by which they modulate the baseband data

bits onto the RF carrier signal. Figure 1 shows the block

diagram of a typical Cartesian transmitter. Here the baseband

logic, which implements the wireless standard and the corre-

sponding signal processing blocks, generates two data streams,

namely In-Phase (I) and Quadrature (Q). The generated data

streams, which are in the digital domain, are first converted to

analog using Digital-to-Analog (DAC) converters. Next, the

translated signals are processed by dedicated data paths in

the RF front-end, where they are amplified, filtered and up-

converted to RF frequencies. The two RF signals are then

combined and the resulting signal is amplified by a power

amplifier and transmitted over-the-air using an antenna.

In recent years, however, transmitter performances have

been significantly affected by increased process variation,

which introduces undesired impairments in the fabricated

devices. Figure 2 illustrates a number of different types of such

impairments resulting from imperfections at various transmit-

ter blocks. To understand the influence of these impairments,

consider an example where the device modulates the trans-

mitted signal using a 64-Quadrature Amplitude Modulation

(QAM) scheme. Figure 3 shows the ideal constellation points

for the 64-QAM on the two-dimensional Cartesian I-Q space.

In the presence of noise, however, the received constellation

demonstrates a characteristic dispersion of the points which

deviate from their ideal positions.

Figure 4 shows the received constellation for the various

impairments introduced in Figure 2. Each plot exhibits some

unique characteristics, that can be decomposed to several

basic features. These features include the rotation, shift, and

compression of the entire constellation, as well as the linear or

radial dispersion pattern for each of the sub-constellations. The

type and degree by which these features are present in each

plot is indicative of the noise type and its impact on the device

operation. As mentioned before, these variations significantly

Fig. 3: 64-QAM constellation

Fig. 4: Received constellation from a transmitter affected by:

(a) amplitude imbalance, (b) phase imbalance, (c) DC Offset

and LO leakage, (d) phase noise, (e) AWGN and (f) gain

compression

affect the performance and yield of the fabricated wireless

device. In order to improve the yield, in the example case of

a 64-QAM transmitter without a built-in loop-back receiver,

post-production calibration is necessary.

III. RELATED WORK

Unlike digital circuits, analog and RF ICs are more suscep-

tible to the impact of process variations. As a result, several

post-production calibration techniques have been proposed

over the years [7]–[11], with the aim of simultaneously op-

timizing performance and yield of the targeted device. How-

ever, when dealing with complex systems such as a wireless

transceiver, calibration becomes an extremely challenging task.

This is evident in a Cartesian transmitter, where the various

impairments within the device manifest in the transmitted

signal, thereby affecting its quality.

In the past, several studies have investigated the impact of

these impairments on the target device [2], [12]–[17]. In [2],

[14], [15], the authors propose a loop-back testing approach,

where the DUT is excited using a carefully selected test signal,

such that the device response contains sufficient information

to determine its performance characteristics. Based on the

observed performance traits, digital pre-distortion is used to
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Fig. 5: Machine learning-based noise classification and decomposition

correct the impact of the impairments. Effectiveness of this

method relies on identifying and generating the test signal

with certain characteristics, which may not always be easy to

establish or may depend on the performance parameter under

study. In [13], [18], [19], the authors use on-chip sensors for

calibration, where the sensor outputs act as low-cost mea-

surements for predicting the RF performances of the device.

Efficacy of such techniques relies on sensor performance,

which may also be affected by process variation.

In contrast to all the studies noted above, the proposed

method: (i) does not rely on any traits of the input test

signal, and (ii) does not require additional logic, such as

sensors or monitors, to be added on the device. Instead, it uses

existing capabilities of an ATE to measure the constellation

data points, from which it predicts the magnitude of the various

impairments using the proposed statistical model.

IV. PROPOSED APPROACH

The proposed approach aims to complement the existing

calibration techniques that are based on EVM and BER,

by providing the type and magnitude for each impairment

affecting the performances of a wireless device. To achieve

this, various machine learning-based models are used to infer

the impairment types and their corresponding levels as a

function of the constellation points. Figure 5 provides an

overview of the proposed two-phased approach. During the

first phase, the underlying supervised learning models are

trained using data from a set of early manufactured devices.

The trained models are then used during production for the

identification and decomposition of the noise source into its

constituents and, thereby, for guiding device calibration.

The first step in both phases of the proposed method

is feature extraction, which aims to create a feature vector

representative of the noise sources affecting the performance

of each device. As shown in Figure 4, the constellation plots

carry enough information to be used as fingerprints revealing

the type of impairments exhibited by the device.

Once the feature vector is selected, a classifier is trained

to identify the noise source based on a labeled dataset from

early devices whose noise source has been manually identified

or synthetic devices which have been purposely generated

to represent their respective noise source. Once trained, the

confidence estimate produced by the classifier can be used for

determining the noise source contributing to the constellation

variation based on the measured constellation of a device.

Similar to the classifier, the same feature vector can be used

to train regression models for each observed impairment in

order to estimate the degree of noise that is present. We note

that a separate regression model is needed per impairment, as

the input features must be uniquely weighted based on the

impairment type whose magnitude we seek to predict.

Sections IV-A and IV-B describe the details of each of the

two major steps in the proposed approach.

A. Feature Extraction

Effectiveness of the proposed approach relies on the selec-

tion of features that can uniquely identify the impact of the

various impairments on the constellation. For this purpose, we

selected several statistical and geometric features represent-

ing i) alignment of each sub-constellation, ii) dispersion for

each sub-constellation, iii) constellation shift, iv) constellation

rotation, and v) total size of the constellation. To measure

sub-constellation alignment, we fit a line within each sub-

constellation using least-squares regression. The angle of the

fitted line is recorded as a feature called θ, which reflects

the alignment of the sub-constellation with respect to the I

axis. The size of each sub-constellation is measured using

the smallest enclosing circle algorithm, where the diameter

of the circle corresponds to the sub-constellation size, λ.

For extracting the remaining features, a common step is
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the identification of the sub-constellation centers. To this

end, the constellation points are first clustered using the K-

Nearest Neighbors (K-NN) algorithm and labeled based on

their respective sub-constellation. For each sub-constellation

point-cloud, the I and Q coordinates of the center are then

calculated. Based on these coordinates, any potential shift

from the ideal constellation points can be calculated and used

as a feature. Next, the sub-constellation center that has the

maximum magnitude within each quadrant is identified and

used for the calculation of the next feature, namely the angle

of rotation of the overall constellation with respect to the

origin. Finally, the two features representing the total size of

the constellation are calculated by finding the distance between

the maximum and minimum coordinate for each axis.

Altogether, for 64-QAM, we extract 133 features from the

constellation of each device, which are used to train the two

types of machine learning-based models from devices in the

training set and to obtain the impairment decomposition report

for devices in production.

B. Modelling

Details of the classification and regression models used in

this work are provided below.

1) Noise Type Classification: A single classification model

is used to identify the impairment type based on the various

features described above. Specifically, a Support Vector Ma-

chine (SVM) with a linear kernel is used for this purpose. The

classifier is trained with devices that have been affected only

by a single noise type. As a result, we rely on the probability

estimate of each label to identify the contribution of multiple

noise impairments. This approach simplifies the collection

and labeling of training samples, as it does not require all

combinations to be present in the training set. On the other

hand, using the probability estimates of a single classifier

can result in having the prominent noise source dominate the

others. For the purpose of this work, this limitation does not

hinder the effectiveness of the proposed approach as it would

result in the identification of the dominant noise source, the

calibration of which must be prioritized. After such calibration,

the dominant noise impairment will be eliminated and the

newly measured constellation will reveal the impact of other

weaker noise impairments in the combination. This sequence

of prediction and calibration will continue until there are no

more impairments in the DUT.

2) Noise Magnitude Regression: For the estimation of

the noise magnitude of each impairment, we use regression

models trained using the same feature vector as the classifier

mentioned in Section IV-A. Here, a Multivariate Adaptive

Regression Splines (MARS) model is used for this purpose

[20]. During production, the probability estimates of the noise-

type classifier will be used to select the appropriate regression

models. More specifically, every noise-type label that has a

probability estimate value above 0% invokes its corresponding

trained regressor to predict the magnitude of that noise.

Existing calibration techniques can then take advantage of the

Noise Impairment Range

Amplitude Imbalance 0.1dB : 1.0dB

Phase Imbalance 1deg : 10deg

AWGN 15dB : 35dB

TABLE I: Simulated noise impairments and their range

predicted noise impairment magnitude to robustly calibrate the

performance of the DUT.

V. EXPERIMENTAL RESULTS

In this section, we first introduce the simulation model used

for creating our dataset and we evaluate the accuracy of the

proposed method on the synthetically generated devices. Then,

we also assess its effectiveness on actual silicon devices.

A. Simulation Model

In our experiments, we model an Orthogonal Frequency-

Division Multiplexing (OFDM) transmitter as the DUT and

an OFDM receiver as the ATE. Performances of the individual

blocks in the system, such as input-output return loss, gain,

noise figure, non-linearity, phase noise, etc., are based on

off-the-shelf components, whose specification margins have

been imported from the corresponding datasheets. Therefore,

when running Monte-Carlo simulations for 100 devices, per-

formance characteristics for the individual blocks are selected

randomly from their specification margins and the device

performance traits can be reproduced across simulations by

setting the seed for the Monte-Carlo run.

In our setup, we consider three different noise impairments,

namely amplitude imbalance, phase imbalance and Additive

White Gaussian Noise (AWGN). The effect of these im-

pairments on the received constellation are studied for both

individual noise conditions, as well as combinations thereof.

Table I specifies the range of each noise impairment. The

first impairment, namely amplitude imbalance, is caused by

gain mismatch between the I and Q data paths. Effects of

this mismatch are simulated by adjusting the gain of the

blocks that constitute the two data paths and the corresponding

mismatch level is represented in dB. The second impairment,

namely phase imbalance or quadrature skew, is caused by

imperfections in the LO splitter, where the phase difference be-

tween its outputs deviates from 90°. Therefore, to simulate this

impairment, the phase difference between the I and Q mixer’s

LO input has been varied and its value is denoted in degrees.

Random fluctuations and noise inherent in the measurement

setup determine the repeatability of the experiments. The third

and final impairment, has been modeled using an AWGN

block at the output of the transmitter chain and the noise

level is represented in terms of Signal-to-Noise Ratio (SNR).

Using this system model, constellation data corresponding to

different noise impairment combinations have been collected

and are used to train and evaluate the effectiveness of the

proposed approach.

B. Results for Synthetic Data

Table II shows the various noise impairment combinations

and their alias number that will be used hereinafter. For the

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:34:32 UTC from IEEE Xplore.  Restrictions apply. 



Noise Impairment Combination Alias

No Impairment (0)

Amplitude Imbalance (1)

AWGN (2)

Phase Imbalance (3)

Amplitude Imbalance + Phase Imbalance (4)

Amplitude Imbalance + AWGN (5)

Phase Imbalance + AWGN (6)

Amplitude Imbalance + Phase Imbalance + AWGN (7)

TABLE II: Noise combinations and their alias

Noise

Impairment
(0) (1) (2) (3)

(0) 100 0 0 0

(1) 0 200 0 0

(2) 0 0 200 0

(3) 0 0 0 200

TABLE III: Confusion matrix for classification of synthetic

devices - single noise impairments

constellation data collected from the theoretical model, the

133 features mentioned in Section IV-A were first extracted

for all noise combinations. Next, the features corresponding

to single noise impairments were used to train an SVM-

based multi-class classifier. Table III shows the classification

accuracy of the multi-class classifier when tested using single-

noise impairments. Here, the test dataset for every single noise

impairments consisted of 200 devices, for which the model

achieved 100% accuracy for all three single-noise impairments

(1), (2) and (3). For the second step of the proposed approach,

MARS regression was performed to identify the magnitude

of the noise impairments. Figure 6 shows the prediction

accuracy of the regression models for the three single-noise

impairments. As can be observed through the fitted 45° line,

the predicted values accurately track the actual measurements.

In order to evaluate the effectiveness of the classifier, an

equivalent of the confusion matrix needs to be defined for the

various combinations of noise impairments. In other words,

we need to define what constitutes a correct and incorrect
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Fig. 6: Predicted magnitude for single noise impairment:

(a) amplitude imbalance, (b) AWGN and (c) phase imbalance

Noise

Impairment

Misclassification

Percentage

(4) 0

(5) 0

(6) 7.33

(7) 0

TABLE IV: Classification report for synthetic devices with

combinations of noise impairments

Noise

Impairment

Mean Relative

Error

(4) 10.99

(5) 7.00

(6) 1.20

(7) 9.40

TABLE V: Noise magnitude prediction error for combination

of noise impairments

classification in all cases. As explained in Section IV, in the

presence of a dominant noise impairment, identification of

the weaker noise impairments in the combination may not

always be possible. In such cases, in order to replicate what

would happen in production, we use simulated calibration.

This means that the model iteratively classifies the IQ data

and calibrates the noise based on the impairment report, until

the DUT is classified under the no-impairment class. If the

model can successfully predict the complete succession of

noise impairments, then there will be no misclassification in

the proposed approach. In other words, a misclassification will

occur if, at any iteration, the model predicts a noise impair-

ment that is not present in the combination or prematurely

terminates the simulated calibration.

Given the above, the two trained models were also evaluated

using different combinations of noise impairments. Table IV

shows the classification accuracy of the multi-class classifier

for the various noise combinations. For noise combinations

(4) and (5), the classifier operates with 0% error. However,

in the case of (6), a misclassification of 7.33% is observed.

By visually inspecting the relevant constellation graphs, it

appears that the combination of Phase Imbalance and AWGN

at very high noise levels creates an impact on the constellation

points which resembles the effect of an Amplitude Imbalance,

thereby explaining the observed classification error.

Based on the classifier output, we use the appropriate noise

regression model to estimate the magnitude of the noise

impairment. Table V shows the prediction accuracy in terms

of mean relative error (MRE) for each combination. MRE is

defined as the average absolute error over the specification

range. Overall, the model predicts with a MRE of less than

11%, with the highest error corresponding to noise combina-

tion (4).

C. Results for Silicon Data

The silicon dataset was provided by Advantest and consisted

of measurements from four devices that were affected by two

different noise impairments, namely Amplitude Imbalance and

Phase Imbalance. In the first step, following the flow of the

proposed approach, we use the multi-class classifier which
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Noise Impairment (0) (1) (3)

(0) 0 0 0

(1) 1 19 0

(3) 5 0 15

TABLE VI: Confusion matrix for classification of silicon

devices

(b) 
Actual Magnitude

1 2 3 4 5

P
re

d
ic

te
d

 M
a

g
n

it
u

d
e

1

2

3

4

5

(a) 
Actual Magnitude

0.1 0.2 0.3 0.4 0.5

P
re

d
ic

te
d

 M
a

g
n

it
u

d
e

0.1

0.2

0.3

0.4

0.5

Fig. 7: Predicted magnitude for Silicon Devices: (a) amplitude

imbalance and (b) phase imbalance

was trained using measurements from the synthetic devices

to classify the noise impairments in the silicon dataset irre-

spective of the silicon devices’ architecture. The classification

results are shown in Table VI. As may be observed, there

are a few classification errors, pushing some of the devices

with the two noise impairment types (1) and (3) available

in the silicon dataset towards the no impairment type (0).

Upon further examination, we observed that these devices

correspond to an extremely low noise level of 0.5° at which

the constellation experiences negligible impact caused by the

impairments, thereby explaining the misclassification.

Once again, based on the classifier output, the appropriate

regression model is chosen to predict the noise magnitude

level. The results for this step are shown in Figure 7 in terms

of actual vs. predicted magnitude values for the two noise

impairment types, with the proximity of the points to the 45°

line confirming the accuracy of the predictions.

VI. CONCLUSION

In this paper, a machine learning-based solution for noise

classification and decomposition in RF transceivers has been

presented. The proposed method leverages the distinct impact

caused by different noise impairments on the transmitted

signal constellation by extracting certain key features from

the constellation data points. Thereby, a multi-class classifier

is used to determine the type of noise impairment that is

affecting the transmitted signal and a regression model is used

to determine the corresponding magnitude of the impairment.

The proposed method has been evaluated using constellation

measurements from a combined set of simulated and actual

silicon devices. Experimental results show that the statistical

model can classify and decompose the noise type with very

high accuracy.
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