
ATTEST: Application-Agnostic Testing of a Novel
Transistor-Level Programmable Fabric

Mustafa Munawar Shihab, Bharath Ramanidharan, Suraag Sunil Tellakula, Gaurav Rajavendra Reddy,
Jingxian Tian, Carl Sechen and Yiorgos Makris

Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas, USA
{mustafa.shihab, bharath.ramanidharan, suraag.tellakula, gaurav.reddy, jingxian.tian, carl.sechen, yiorgos.makris}@utdallas.edu

Abstract—A recently introduced TRAnsistor-level
Programmable fabric (TRAP) has demonstrated great promise
towards seamless unification of high-density reconfigurable logic
with Application-Specific Integrated Circuits (ASICs). However,
practical deployment of TRAP relies on the development
of a comprehensive mechanism for detecting manufacturing
defects. Unfortunately, the state-of-the-art test schemes are
developed either for ASICs or for Field-Programmable Gate
Arrays (FPGAs) and do not support this new transistor-level
architecture. To address this limitation, we present a novel
application-agnostic test methodology specifically tailored to
the TRAP fabric. We first introduce a multi-phase, cascadable
scheme to efficiently test the programmable transistors in
TRAP’s Logic Elements (LEs). Then, we define the required test
patterns for verifying the correct functionality of the built-in
D flip-flop, full-adder, and multiplexer of each LE. Next, we
present a systematic approach for testing the interconnect
network. Lastly, we discuss the limitations in testing the memory
cells used for storing the TRAP programming bits and we
propose design modifications for improving test coverage.

I. INTRODUCTION

A. Motivation
Reconfigurable computing has made remarkable progress

in recent years and has become a key technology for a
broad gamut of applications, ranging from design emulations
to deep-learning neural network acceleration [1]. While the
conventional Look-Up Table- (LUT-) based FPGAs continue
to lead this domain, several studies have investigated alterna-
tive architectures based on fine-granular programmability [2]–
[4]. Among them, a recent work [5] introduced a field-
programmable transistor array design called TRAP, which
demonstrated particularly compelling features, such as (i)
better area utilization than LUT-based FPGAs in the same
technology node, and (ii) CAD support through an ASIC-
compatible design flow which enables seamless integration of
the TRAP programmable fabric with custom ASIC designs.
Consequently, TRAP is considered as a very promising tech-
nology for various novel applications both in reconfigurable
computing (i.e., in-field hardware updates) and in hardware
security (i.e., design obfuscation) [6], [7]. However, for TRAP
to be successfully used in actual products, the capability to
thoroughly examine the fabric for manufacturing defects that
may jeopardize its correct functionality after fabrication is
indispensable. Therefore, development of a robust and efficient
test method which can ensure reliable and fault-free operation
of a deployed TRAP fabric is paramount.

B. State-of-the-art and Challenges
For the most part, conventional integrated circuit (IC) testing

methodologies have been developed for ASICs. While there
exist different approaches to it, by definition, fault detection
in ASICs is always application-specific. That is, the testing
schemes probe ICs based on the function(s) they implement.

On the other hand, testing of reconfigurable devices is a
relatively small but expanding research area that predom-
inantly focuses on FPGAs. Unlike its ASIC counterpart,
FPGA testing can be either application-agnostic [8]–[10] or
application-specific [11], [12]. Typically, the manufacturer
tests the resources of an FPGA exhaustively to ensure correct
functionality of any design that can be mapped onto it, while
an end-user only tests a device for his/her target application.
Prior studies have presented various schemes for efficiently
testing reconfigurable devices, often leveraging ASIC testing
techniques such as built-in self-test (BIST) [9] and design for
test (DFT) [12]. However, such schemes are exclusively de-
signed for and applicable to conventional LUT-based FPGAs.

TRAP’s distinct architecture and intended applications in-
troduce a unique set of challenges in testing the fabric for
manufacturing faults. Specifically, TRAP is proposed to be
integrated on-die with custom designs. However, unlike the
custom parts of a design, the TRAP portion can be re-
configured for different applications and, therefore, demands
application-agnostic testing. Furthermore, while TRAP and
conventional FPGAs both consist of logic, interconnect, and
memory components, their architectures bear fundamental dif-
ferences: (i) FPGAs implement logic with LUTs that are tested
at the functional level for stuck-at faults, whereas TRAP’s
logic elements (LEs) need to be tested for transistor-level
stuck-on/off faults. (ii) The FPGA interconnect network routes
signals through many-to-many switch matrices. In contrast,
TRAP leverages a pass transistor-based switch design that
enables routing via one-to-one track links. (iii) While FPGAs
store the programming bits in standard SRAM cells, TRAP
leverages a custom memory cell design that consists of a
latch driven by two transmission-gate switches. As a result of
these (and other) differences, there exists no straightforward
mechanism to apply existing IC test methods to TRAP.

C. Contributions
To alleviate incompatibility with existing test methods and

to enable TRAP’s promising capabilities, herein we present
ATTEST, an Application-agnosTic Test method for TRAP.
ATTEST is a robust fault detection method, carefully designed
to address the unique test requirements of this new fabric.
Specifically, the key contributions of this work are as follows:

• Specifying Test Requirements: We analyze TRAP’s
architecture from a test perspective and reveal its
component-specific test requirements and challenges.

• Logic Element Testing: We propose a multi-phase,
cascadable test scheme for the programmable transistors
in TRAP. This scheme can be set up for either a fast,
detection-only scan of the entire fabric or for a fine-
granular test to locate the source of the fault(s). We also
define test patterns for the built-in cells in each LE.

2020 IEEE 38th VLSI Test Symposium (VTS)

!

978-1-7281-5359-9/20/$31.00 ©2020 IEEE

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:17:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Hierarchical organization of the TRAP fabric.

Fig. 2: Silicone prototype and hardware testbed for TRAP [6].

• Interconnect Testing: We present a route-based fault-
detection scheme that tests the vertical and horizontal
wire tracks via pad-to-pad bouncing of signals across
the fabric. Our scheme also activates and tests the pass
transistor switches and the bi-directional signal repeaters.

• Memory Testing: We discuss the limitations of the
current design with regards to testing the memory cells
that store the programming bits of TRAP and we propose
design modifications that can maximize test coverage.

Our SPICE simulation results confirm a 100% fault cover-
age for the TRAP LEs with our proposed scheme. Further-
more, our parameterized Python-based tool can successfully
generate a full set of signal routes to exhaustively test the
interconnect network of a TRAP fabric of any size.

II. TRANSISTOR-LEVEL PROGRAMMING FABRIC (TRAP)
TRAP is a field programmable transistor array that supports

post-fabrication instantiation of arbitrary logic functions [5].
The target function, which can be either combinational or
sequential, are instantiated by connecting cell-based primitives
that are programmed at the transistor-level.

A. Architecture
The fabric is structured as a hierarchically arranged CMOS

sea-of-transistors, as portrayed in Figure 1.
Logic element: The logic element (LE) is the core component
for implementing a function on TRAP. As shown in the figure,
each LE contains four columns of transistors. Each column
consists of eight transistors, wherein four transistors have a
vertical orientation and the other four are aligned horizontally.
The transistors in an LE can be stitched together into gates
or state-holding components. In order to improve TRAP’s
performance and area efficiency, each LE also includes a built-
in flip-flop (DFF), a full adder (FA) and a multiplexer (MUX).
The DFF is connected to column 1, while the MUX to column
4. The FA is connected to both columns 2 and 3.
Unit: Each logic element is combined with an address decoder,
memory blocks, switch boxes and a repeater to form a unit.
The memory blocks store the programming bits, while the
switch boxes are used to deliver the bits to the LE. The repeater
is used for boosting signals traveling across multiple units.
Group: At the top of the hierarchy, four neighboring units
together form a functional block called a Group. The groups

TABLE I: TRAP components and corresponding fault models.
Category Component Fault/Test Type

Logic Element Programmable Transistor Stuck-on (SON) / Stuck-off (SOFF)
Built-In Cell (DFF, FA, MUX) Stuck-at-0/1 (SA0 / SA1)

Interconnect
Network

Metal Track Stuck-at-0/1 (SA0 / SA1), Bridging Fault
Switch (Pass Transistor), Repeater Stuck-on (SON) / Stuck-off (SOFF)

Memory Flipflop Stuck-at-0/1 (SA0 / SA1)
Memory Cell Memory Test

communicate between them and with the fabric’s input/output
(I/O) pads through programmable interconnect (not shown in
the figure). We note that the role of a group is to assist
in address mapping and storing of the programming bits.
Otherwise, from a hardware/CAD perspective, TRAP can be
defined as a connected array of units, as depicted in the figure.

B. Programming Mechanism
In order to ensure compatibility and streamlined integration

with the ASIC design-flow, TRAP utilizes a library of cells
with fixed height but variable widths. Consequently, different
logic gates require a varying number of (transistor) columns,
can start from any column, and can extend across multiple
LEs. As an example, the programming of a NAND3 gate
in a TRAP LE is shown in Figure 1, where a suitable
bitstream switches on the required transistors (highlighted
in blue) and turns off the remaining ones. In addition, the
programming bitstream needs to activate the required switches
in the corresponding switch boxes. A prototype TRAP chip
was implemented in GlobalFoundries 65nm technology along
with an FPGA-based testbed, as shown in Figure 2, in order
to verify and evaluate its design [6].

III. OVERVIEW OF THE PROPOSED METHODOLOGY

In order to develop a robust testing methodology for TRAP,
it is essential to understand the impact of potential manufac-
turing defects on its operation. The TRAP fabric consists of
three main components: (i) programmable logic elements, (ii)
programmable interconnect network, and (iii) memory cells
for storing programming bits. In the following, we consider
these components and the corresponding type of (potential)
manufacturing faults they need to be tested for. A summary
of our findings is shown in Table I.
Logic Element (LE): Instead of using a functional unit, such
as an LUT, TRAP implements logic functions by directly
stitching together the programmable transistors in its LEs.
Consequently, we need to test the thirty-two transistors in each
LE for transistor-level stuck-on (SON) and stuck-off (SOFF)
faults. On the other hand, the three built-in cells in each
LE implement either a combinational (FA and MUX) or a
sequential (DFF) function. Therefore, we need to test them for
functional-level stuck-at 0 (SA0) and stuck-at 1 (SA1) faults.
Interconnect Network: TRAP leverages an island-style in-
terconnect model where metal tracks run in the vertical
and horizontal directions, connecting LEs and I/O pads as
required by the mapped design. In addition, TRAP employs
pass transistors as switches that, when turned on, enable a
signal to travel from a vertical track to a horizontal track or
vice versa. Finally, TRAP has bi-directional repeaters placed
at regular intervals to avoid signal attenuation. To ensure
fault-free operation, we need to test the tracks for stuck-at
(SA0/SA1) and bridging faults. In addition, we must test the
switches and the repeaters for stuck-on/off (SON/SOFF) faults.
Memory Cells: TRAP’s memory components can be catego-
rized into two groups: (i) I/O-associated memory that stores

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:17:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Proposed inverter-based testing (IBT) of a TRAP LE: (a) Phase 1, (b) Phase 2, and (c) Phase 3.

TABLE II: Test configurations used in the IBT scheme.1
Phase 1

Test
Vector

Input
Value

Transistors
Under Test

Transistors on Path
(Pgmd. as wire/short)

Output Fault being testedO2

Config. A (i) 0 P7, N7 P2, P3, N2, N3 1 P7→SOFF & N7→SON
(ii) 1 0 P7→SON & N7→SOFF

Config. B (i) 0 P2, N2 P7, P3, N7, N3 1 P2→SOFF & N2→SON
(ii) 1 0 P2→SON & N2→SOFF

Config. C (i) 0 P3, N3 P7, P2, N7, N2 1 P3→SOFF & N3→SON
(ii) 1 0 P3→SON & N3→SOFF

Phase 2
Test

Vector
Input
Value

Transistors
Under Test

Transistors on Path
(Pgmd. as wire/short)

Output Fault being testedO1

Config. A (i) 0 P1, N1 P7, N7 1 P1→SOFF & N1→SON
(ii) 1 0 P1→SON & N1→SOFF

Phase 3
Test

Vector
Input
Value

Transistors
Under Test

Transistors on Path
(Pgmd. as wire/short)

Output Fault being testedO3

Config. A (i) 0 P8, N8 P9, P4, N9, N4 1 P8→SOFF & N8→SON
(ii) 1 0 P8→SON & N8→SOFF

Config. B (i) 0 P9, N9 P8, P4, N8, N4 1 P9→SOFF & N9→SON
(ii) 1 0 P9→SON & N9→SOFF

I/O pad programming bits, and (ii) LE-associated memory
which stores programming bits for all the LEs. The memory
cells need to be tested with standard test techniques such as
March-based algorithms [13].

IV. TESTING THE LOGIC ELEMENTS

As mentioned in Section III, in order to ensure fault-free
operation of an LE we need to test the 32 programmable
transistors, as well as the built-in cells it contains, namely, a D-
flipflop (DFF), a full-adder (FA), and a multiplexer (MUX).
In this section, we first introduce a multi-phase scheme for
identifying the faulty transistors in an LE. Then, we discuss
how the proposed scheme can be cascaded to achieve a fast,
parallelized sweep of the fabric for detecting fault(s). Finally,
we present test patterns for the three built-in cells in an LE.

A. Inverter-based Testing (IBT) of Programmable Transistors
In the proposed scheme, we stitch together a particular

set of transistors to form an inverter logic gate. The inverter
can span over either one or two columns of an LE. In each
test configuration, the pair of transistors under test receives
the input test vectors, whereas the remaining transistors on
the path to the output are programmed to act as wire (i.e.,
shorted). Since each LE has four columns of transistors, we
maximize test efficiency by duplicating the aforementioned
inverter formation setup on the remaining column(s) of the

1For better readability, we have represented each phase and its correspond-
ing configurations in terms of the left inverters in the LE. The test patterns
will be the same for the transistors forming the right inverters.

Fig. 4: Sample SPICE simulation of IBT (Phase 1 – Config.
A) confirms detection of P7→SOFF fault at output O2.

LE. Furthermore, we group multiple configurations to form a
phase. Within each phase, the configurations represent which
pair of transistors in the inverter is being tested, where the
different phases represent a pair of inverters programmed in
the LE. As shown in Figure 3, our IBT scheme has three
phases and each phase contains up to three configurations.
In the figure, the transistors under test in each configuration
are marked with different colors: Configuration A (red), Con-
figuration B (green), and Configuration C (blue). The details
for each configuration, i.e., input value, transistor under test,
transistors on path, expected output, and faults being tested
are summarized in Table II.

As shown in Figure 3(a), Phase 1 consists of three config-
urations. In Configuration 1, transistors P7 and N7 are tested
and given inputs, while P2, P3, N2 and N3 are transistors
on the path to the output (O2) and are programmed as wires.
First, we apply 0 as input and observe the output to verify that
P7 and N7 are not stuck-off and stuck-on, respectively. We,
then, apply 1 as input to test whether P7 is stuck-on or N7 is
stuck-off. In Configuration 2, P2 and N2 receive input values
and are tested for stuck-on and stuck-off faults, while P7, N7
along with P3 and N3 are programmed as wires to form the
inverter. Similarly, Configuration 3 tests P3 and N4 for stuck-
on/off faults, whereas P7, P2, N7, and N2 are programmed
as wires. In the exact same process, Configurations 1, 2, and
3 also test the transistors P10, P5, P6, N10, N5, and N6, i.e.,
the six transistors that form the right inverter on the third and
fourth columns of the LE, as shown in Figure 3.

The inverter arrangements for Phase 2 and Phase 3 are
shown in Figures 3(b) and (c), respectively. As summarized

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:17:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Example of cascading the IBT scheme across LEs to
reduce I/O overhead and enable parallelized fault detection.

in Table II, Phase 2 involves a single configuration that tests
four transistors: P1 and N1 through output O1, and P4 and
N4 through output O3. On the other hand, Phase 3 consists
of two configurations that test a total of eight transistors: P8,
P9, N8, and N9 via output O2, and P11, P12, N11, and N12
via output O1 of the adjacent LE. As the execution process for
these two phases is very similar to the aforementioned process
for Phase 1 and due to space limitations, a more detailed
explanation of their operation is omitted.

In conjunction, the three phases of the IBT scheme can test
twenty-four transistors in a TRAP LE and precisely identify
the location of a fault, if one exists. It is also worth noting that
IBT considers a single-fault model. Figure 4 depicts a SPICE
simulation result for IBT where the impact of a stuck-off fault
in transistor P7 is propagated to the output O2.

B. Cascading IBT for Parallelized Fault Detection

In many cases, detecting the presence of a fault is the critical
goal, while identifying its location is optional or secondary. On
the other hand, while IBT can accurately detect and locate
faults in the TRAP LE, for all but one configurations, it
requires two dedicated output pads to read out the test results
from each LE. Consequently, if there are n LEs in a TRAP
fabric, the number of I/O pads required to implement IBT for
all the LEs in parallel would be 2n+1. This is because each
configuration requires one input value and all the LEs tested
in parallel can share that input. For larger fabric sizes or high-
density applications, the availability of sufficient output pads
maybe become a bottleneck. Nevertheless, the architecture of
our IBT scheme can provide an elegant solution for such cases.

Leveraging “inverters” for fault-detection enables us to
cascade the transistor configurations in each IBT phase across
multiple LEs and form a chain that can then propagate the
impact of a fault to the final output. Specifically, the transistors
under test in the first LE of the chain receive the test input, the
identical transistors in the second LE receive the output of the
first LE as their input, the transistors in the third LE receive
the output from the second LE and so forth. Also, the tests
being purely combinational, no timing constraint needs to be
considered. Figure 5 demonstrates an example of the cascaded
IBT for Phase 1, where the first LE (LE1) receives the primary
inputs (PIs) for the three configurations (red, green, and blue).
The test output(s) from LE1 is then forwarded to the second
LE (LE2) as input(s).

The cascaded IBT enables exploration of the trade-off be-
tween fast, parallelized fault detection with low I/O overhead
and the ability to zero in on the location of a fault. In other

Fig. 6: Testing the center-row horizontal transistors (CRHTs)
for (a) Stuck-off (SOFF), and (b) Stuck-on (SON) faults.

words, a longer IBT chain represents faster testing with fewer
I/O pads, while a shorter chain ensures better and faster fault
localization (with subsequent single LE IBT testing).

C. Testing the Center-Row Horizontal Transistors (CRHT)
The proposed IBT scheme cannot test the eight horizontally-

oriented transistors P13–P16 and N13–N16 located in the
center two rows of the TRAP LEs. This is due to an archi-
tectural limitation in TRAP that prohibits us from controlling
the aforementioned transistors with inputs from external I/O.
Specifically, these transistors can be switched on/off only
by programming through memory. To address this limitation,
we propose two additional test configuration pairs that can
successfully test the CRHTs for stuck-on/off faults.

1) Stuck-Off Test: Figure 6(a) shows the first configuration
for this test, where we cascade the LEs while programming
them to switch on only P13–P16 in each of them. We then
apply a 0 value input to P7 and P1 and sample the output
from O4 of the last LE. A high (1) value of the sampled output
confirms absence of any stuck-off (SOFF) faults in any of the
P13–P16), as the only path for signal flow is through them.
Similarly, in the second configuration P13–P16 are switched
off and N13–N16 are switched on and tested for SOFF faults.

2) Stuck-On Test: In the first configuration of this test, we
switch off all the transistors in the LE except for P8 and P3,
as shown in Figure 6(b). The value of the outputs O1 and
O2 are tested, which should be low (0) unless at least one
of the four adjacent CRHTs P13, N13, P14, and N14 has a
stuck-on (SON) fault. In the second configuration, we test for
P15, N15, P16, and N16 by switching on P11 and P6 and
observing O3 and O4 (adjacent LE). However, this test must
be done for individual LEs to accurately detect SON faults.

D. Testing the Built-In Cells
The output pins in a TRAP LE are shared between the

built-in cells and the programmable transistors. Specifically,
the DFF is connected to O1, the FA is connected to O2 and
O3, and the MUX is connected to O4. To avoid potential “race”
conditions, TRAP implements a switch between the built-
in cells and their corresponding output pins. Consequently,
testing of a built-in cell also involves testing its switch via
the enable (En) signal, as shown in Table III. The signals that
need to be tested for each built-in cell are discussed below.
D Flip-Flop (DFF): Apart from the clock signal (tested
separately), the built-in DFF has three inputs (data (D), enable
(En), and Reset), and one output (Q). To test the DFF, we

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:17:40 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Test patterns for the built-in cells in TRAP LE.
D Flip-Flop (DFF)

En Reset Clock D[t] Q (O2) [t+1] Test Description
(i) 1 0 ↑ � 1 1 1 Initialization vector
(ii) 1 0 ↑ � 1 0 0 D: SA1, Q: SA1
(iii) 1 0 ↑ � 1 1 1 D: SA0, Q: SA0
(iv) 1 1 ↑ � 1 1 0 Reset signal works
(v) 0 0 ↑ � 1 1 0 Enable signal works

Full-Adder (FA)
En A B C Sum (O2) Carry (O3) Test Description

(i) 1 0 0 0 0 0 Initialization vector
(ii) 1 1 0 0 1 0 A: SA0, Sum: SA0
(iii) 1 1 1 0 0 1 B: SA0, Sum: SA1, Carry: SA0
(iv) 1 1 1 1 1 1 C:SA1
(v) 1 0 1 1 0 1 A:SA1
(vi) 1 0 0 1 1 0 B:SA1, Carry: SA1
(vii) 1 0 0 0 0 0 C:SA1
(vii) 0 1 1 1 0 0 Enable signal works

Multiplexer (MUX)
En Sel (1: A, 0: B) A B Out (O4) Test Description

(i) 1 1 0 0 0 Initialization vector
(ii) 1 1 1 0 1 A: SA0, Out: SA0
(iii) 1 1 0 1 0 A: SA1, Out: SA1
(iv) 1 0 0 1 1 Sel: SA1
(v) 1 0 0 0 0 B: SA1
(vi) 1 0 0 1 1 B: SA0
(vii) 1 1 0 1 0 Sel: SA0
(vii) 0 1 1 0 0 Enable signal works

examine its input and output signals for stuck-at faults and
check whether the control signals perform as expected. Table
III summarizes the test vectors required for the DFF.
Full Adder (FA): The built-in FA has a total of four inputs
(enable (EN) and three data inputs A, B, and C) and two outputs
(Sum and Carry). As shown in Table III, we apply eight
vectors to test the signals for potential logical (stuck-at) faults.
Multiplexer (MUX): The built-in MUX has two control inputs
(enable En and select (Sel)), two data inputs (A and B), and
a data output Out. Table III summarizes the vectors used to
test these signals and, thereby, ensure correct MUX operation.

V. TESTING THE INTERCONNECT NETWORK

A high-level layout of TRAP’s island-style interconnect net-
work is depicted in Figure 7, where each I/O pad is connected
to a multiplexer, which, in turn, can connect to specific tracks
of a switch-box (SB). A switch-box consists of vertical (VT)
and horizontal (HT) tracks that surround an LE. All the switch-
boxes are cascaded together, vertically and horizontally, with
a bi-directional repeater placed between each pair to ensure
signal integrity. Each LE has upper and lower connection-
boxes (CB) that connect the LE to the horizontal tracks of the
surrounding switch-box. The interconnect network of TRAP
has limited flexibility, that is, each vertical track can only
connect to a specific set of horizontal tracks and vice versa.
Finally, specific vertical and horizontal tracks can be connected
via pass transistor switches.

A. Testing Requirements for the Interconnect Network
In order to ensure a fault-free interconnect network, the

testing scheme must execute the following tasks:
1. I/O Pad MUXs: The MUXs need to be tested for confirm-
ing that they can connect to the specified switch-box tracks.
2(a). Switch-box – Tracks: The horizontal and vertical tracks
need to be tested for open, short, and bridging faults. In
addition, the repeaters need to be tested for stuck-open faults.
2(b). Switch-box – Switches: The pass transistor switches
need to be tested for stuck-on/off faults to ensure that a vertical
track can connect to and only to the intended horizontal tracks.
3. Connection-box: The vertical tracks and the switches
connecting those tracks to the surrounding switch-box need
to be tested for the faults mentioned in Tasks 2(a) and (b).

Fig. 7: The interconnect network of TRAP.

Fig. 8: Examples of automatically generated routing patterns
for testing a 2X2 TRAP fabric interconnect network.

B. Routing-Based Fault Detection

We propose a fault detection methodology for the TRAP
interconnect network that leverages pad-to-pad signal prop-
agation across the fabric. Specifically, our scheme applies
the test vector through an I/O pad, guides the signal across
the fabric through a specific pre-determined route, and then
takes the output through another I/O pad for verification.
The “routes under test” are carefully designed to cover all
the interconnect components that need to be tested, based on
the four aforementioned tasks/requirements. Therefore, testing
the full set of routes ensures that the network is tested
exhaustively. Once a route is identified, a corresponding test
pattern is generated based on the components connected by the
path and all potential faults that may affect them. Our method
leverages existing fault-detection schemes for generating test
patterns for the paths and can simultaneously test multiple
(mutually exclusive) paths through different pairs of I/O pads.
Automating the Route Generation Process: For an efficient
and accurate implementation of the proposed scheme, the path
generation process needs to be automated and scalable. To this
end, as a proof of concept, we have implemented a Python-
based tool that captures the TRAP architecture as a graph in
which the I/O pads are defined as start/end nodes, while the
tracks are the edges. The switches and the repeaters together
represent the intermediate nodes but are marked differently to
reflect their purpose. Out tool leverages a parameterized model
of TRAP and can successfully generate the smallest set of
paths required to exhaustively test the interconnect network
of a given TRAP fabric. Figure 8 shows various examples of
test paths generated by the tool for a 2X2 TRAP fabric.

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:17:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Storing programming bits on TRAP – (a) single memory cell, (b) I/O-associated, and (c) LE-associated memory array.

VI. TESTING THE MEMORY CELLS

The TRAP memory cell consists of a latch and two trans-
mission gate-based switches to control data movement, as
shown in Figure 9(a). The clock signal is used to load data
into the latch, while the copy signal controls transferring of
the stored bit to its designated location on the fabric. TRAP
uses two separate arrays of such cells to store programming
bits, one for the I/O pads and one for the LEs. In the following,
we discuss current design constraints that prohibit testing the
TRAP memory arrays with conventional methods and we
propose design modifications to enable superior test coverage.

A. I/O Associated Memory (IAM)
Figure 9(b) portrays the architecture of the IAM array which

leverages a DFF chain to load the data into the memory cells
(MC). It is rather straightforward to test the DFFs by scanning
test data in and out through the chain. Unfortunately, the
current design of IAM has no mechanism to read out the
content of the MCs, leaving no viable means for testing them
directly. To resolve this limitation, we propose to incorporate
a multiplexer (MUX) and a demultiplexer (DMUX) for each
MC. As shown in the figure, the MUX and the DMUX can
allow us to read data out of the MCs and load them back
into the DFF chain, respectively. If implemented, the proposed
modification can create an alternate scan path that can be used
to test the MCs in the IAM with a robust memory testing
scheme such as a March test [13]. A March test consists of
a finite sequence of test primitives (also known as elements)
applied to the memory cells to detect a range of faults such as
stuck-at, stuck-on/off, transition, coupling, linked, and address
decode faults.

B. LE Associated Memory (LAM)
The LAM leverages a three-tier address decoder and mem-

ory buffer pipeline for loading the programming bits into the
MCs, as shown in Figure 9(c). Specifically, a 96-bit data is
sequentially fed in through an I/O pad, out of which an 11-bit
address is used by the decoders and an 85-bit payload is loaded
into a memory column of a unit (LE). The memory array for
each unit consists of 8 such columns of cells. While the LAM
does support data read-out, it is the 85-bit wide granularity
of the read-write operations that prevents it from leveraging
conventional test methods. This is because memory testing
techniques, such as March tests, are predominantly designed
for bit-wise memory operation. Indeed, modifying the address
decoder design for cell-specific access and inserting a desig-
nated scan path connecting each cell in the array can enable
the most accurate testing of the LAM. However, considering

the overall size of the LAM, implementing such hardware
modifications can incur overwhelming, if not prohibitive, area
overhead. As a more efficient and feasible solution, we propose
to test the LAM with a unique, albeit lesser-known, variation
of March test for word-oriented memory (March-WOM) [14].
Specifically, applying March-WOM on TRAP’s LAM, with the
word-size set to 85 bits (i.e., considering each memory column
as a single word) can enable us to test the array for most
memory-related errors in the form of inter-word and intra-
word faults. Finally, we recommend augmenting the March-
WOM test to include coverage for detecting data retention
faults (DRFs) in TRAP memory cells.

VII. CONCLUSION

We developed a novel application-agnostic testing method
for the TRAP fabric. This method consists of a multi-phase,
cascadable scheme to efficiently test the programmable tran-
sistors in the LEs and includes carefully crafted test patterns
for ensuring that the built-in DFF, full-adder, and multiplexer
of each LE operate correctly. It also comprises a systematic
approach for testing TRAP’s interconnect network. To com-
plete the TRAP fabric test method, we also proposed design
modifications to enable direct testing of the memory cells
that store the programming bits of the TRAP fabric, which
is impeded by current design limitations.

REFERENCES

[1] C. Wang, L. Gong, Q. Yu et al., “DLAU: A Scalable Deep-Learning
Accelerator Unit on FPGA,” IEEE TCAD, vol. 36–3, pp. 513–517, 2016.

[2] P. Layzell, “A New Research Tool for Intrinsic Hardware Evolution,” in
International Conference on Evolvable Systems, 1998.

[3] A. Stoica, “Towards Evolvable Hardware Chips: Experiments with a
Programmable Transistor Array,” in MicroNeuro, 1999.

[4] J. Langeheine, K. Meier et al., “Intrinsic Evolution of Analog Electronic
Circuits Using a CMOS FPTA Chip,” in EUROGEN, 2003.

[5] J. Tian, G. Reddy et al., “A Field Programmable Transistor Array Feat.
Single-Cycle Partial/Full Dynamic Reconfiguration,” in DATE, 2017.

[6] M. M. Shihab, J. Tian et al., “Design Obfuscation through Selective
Post-Fabrication Transistor-Level Programming,” in DATE, 2019.

[7] B. Hu, J. Tian, M. Shihab et al., “Functional Obfuscation of Hardware
Accelerators through Selective Partial Design Extraction onto an Em-
bedded FPGA,” in GLSVLSI, 2019.

[8] W. K. Huang, F. J. Meyer, X.-T. Chen et al., “Testing configurable lut-
based fpga’s,” IEEE TVLSI, vol. 6, no. 2, pp. 276–283, 1998.

[9] C. Stroud, S. Wijesuriya, C. Hamilton et al., “Built-In Self-Test of FPGA
Interconnect,” in ITC, 1998.

[10] M. B. Tahoori and S. Mitra, “Automatic Configuration Generation for
FPGA Interconnect Testing,” in VTS, 2003.

[11] M. Tahoori, “Application-dependent testing of fpgas,” IEEE TVLSI,
vol. 14, no. 9, pp. 1024–1033, 2006.

[12] M. Renovell, P. Faure, J. M. Portal, J. Figueras, and Y. Zorian, “Is-fpga:
a new symmetric fpga architecture with implicit scan,” in ITC, 2001.

[13] A. J. Van De Goor, G. N. Gaydadjiev, V. Mikitjuk et al., “March LR:
A Test for Realistic Linked Faults,” in VTS, 1996.

[14] A. J. Van de Goor, Tlili et al., “March Tests for Word-Oriented
Memories,” in DATE, 1998.

!

!

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:17:40 UTC from IEEE Xplore. Restrictions apply.

