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Abstract—Post-fabrication performance calibration, a.k.a.
trimming, is an essential part of analog/RF IC manufactur-
ing and testing. Its objective is to counteract the impact of
process variations by individually fine-tuning the performance
parameters of every fabricated chip so that they meet the
design specifications and, thereby, to ensure both high yield
and high performance. The prevalent trimming process currently
employed in industry involves a search algorithm which consists
of repeated digital trim-code selection and measurement in order
to optimize the trimmed performance. With hundreds of trims
commonly performed on contemporary analog/RF chips, this
process becomes overly expensive. In this work, we discuss a
machine learning-based approach that ameliorates this problem
by leveraging inter-trim correlation. Specifically, our method
relies on effectively trained regression models which use the
measurements obtained through an intelligently selected and
conventionally performed subset of trims, in order to accurately
predict the optimal trim codes for the omitted trims. Thereby, as
corroborated using data from an actual analog/RF IC currently
in production, trim time can be drastically reduced without
significantly affecting the accuracy of the selected trim codes.

I. INTRODUCTION
The continuous scaling of minimum feature sizes in con-

temporary semiconductor manufacturing technologies, which

seeks to enable more compact yet more powerful integrated

circuits (ICs), has introduced increasingly profound process

variation and, by extension, new challenges in the IC design,

fabrication and test process. Analog/RF ICs, in particular, have

been faced with the challenge of a wider and less controlled

distribution of fabricated chip performances due to process

variation which, in turn, increases the likelihood of chip

performances falling outside their design specification range

and resulting in excessive yield loss. As a countermeasure,

analog/RF designers have traditionally resorted to conserva-

tive margins in order to mitigate the risk, thereby leaving

performance on the table. Recently, however, in an effort to

achieve high performance through aggressive design while,

at the same time, ensuring high yield despite the increased

process variation of the latest technology nodes, the concept

of post-fabrication performance calibration, or trimming, has

been extensively explored [1]–[15].

Trimming methods rely on “tuning knobs,” i.e., circuitry

which can be introduced in the design and individually tuned

for each fabricated chip after manufacturing, in order to

counteract the impact of process variation and bring the per-

formances of the chip not only within the design specifications

but also as close to their optimal value as possible. Once the

appropriate setting for each such tuning knob is decided, it is

saved on-chip, usually as a digital code stored in non-volatile

or one-time programmable memory. This trimming process is

typically performed during manufacturing testing and results

in each chip having its own set of trim codes that optimize its

performances. In this way, high yield and high performance

can be simultaneously achieved.

The actual trimming process, however, is a rather challeng-

ing and time-consuming. Indeed, the relation between knob

positions (i.e., trim codes), process variation and analog/RF

IC performances is quite complex. Therefore, industrially

deployed and practiced solutions involve worst-case exhaustive

algorithms which carry out a directed (usually linear or binary)

search in the space of possible trim codes, measuring the

target performance for each selected trim code and terminating

the search when a target criterion (i.e., performance value)

has been reached or when there are no more code options

to try. Considering the realities of analog/RF IC testing,

which involve expensive instrumentation and lengthy setup

and settle times, the duration and cost of such an iterative trim

code search process becomes quickly quite onerous. Solutions

which can reduce the burden of trim code selection without

significantly impacting the quality of the chosen trim codes

are, therefore, highly desired.

To this end, a variety of approaches have sought to leverage

the power of statistical and machine learning methods, along

with the correlation amongst continuous measurements in

analog/RF ICs, in order to accelerate the process of post-

production performance trimming. Specifically, based on the

general concepts of alternate test [16] and machine learning-
based test [17], numerous statistical trimming methods have

been proposed in the literature, using simple measurements

from either intrusive or non-intrusive on-chip sensors. Broadly,

these methods can be divided into iterative test-&-tune [8],

[11], [14] and one-shot [1], [9], [13], [18] approaches. Iterative

test-&-tune solutions typically perform a directed search, each

time selecting a new trim code and repeating the low-cost mea-

surements through which they predict (using trained statistical

models) the performances that are being trimmed, ultimately

seeking to optimize a target criterion in the space of device

performances. One-shot solutions, on the other hand, share the

same objective yet use only one set of low-cost measurements

for a single trim code in order to build statistical models which

enable prediction of the final trim code for a device.

Along a different direction to trim cost reduction, the

method in [19] uses a lookup table to estimate the trim code,

followed by a linear search in the vicinity of the estimated

trim code to arrive at the optimal trim code. In [20], the trim
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Fig. 1: Training and Application of (a) Pre-Trim Performance Prediction Models, and (b) Trim Code Prediction Models

code is based on a trim code lookup table that is updated

dynamically when process shifts in wafer fabrication occur.

The method in [21] uses the unique electrical test (E-test)

signature of each wafer to customize the starting point and,

thereby, narrow the range of the trim code search. In yet

another approach to speed up trimming, the method in [22]

takes advantage of spatial correlation of trims across a wafer

and uses measurements from a few sampled die to predict the

trim codes for the remaining die on the wafer. Alternatively,

the method in [23] reduces trim time in the case of multi-

variable trims by simultaneously searching for the optimal

search codes through a simplex algorithm.
In this work, we investigate a different statistical approach

to reducing the time and cost of analog/RF IC trimming.

Specifically, in contrast to the aforementioned methods which

leverage correlation between low-cost (alternate) measure-

ments and circuit performances to select the appropriate trim-

code, or which rely on spatial correlation, e-test signatures or

simultaneously performed trim correlation, we seek to leverage

inter-trim correlation. Specifically, our approach relies on

measurements obtained while executing a judiciously selected

subset of trims using the conventional approach, which are

then processed by trained statistical models, in order to predict

the trim codes for the remaining trims. In this sense, this

method is very compatible and can be easily deployed on

the test floor, as it does not require any additional circuitry

or measurements beyond what is already available on the

chip and the ATE. In a way, our inter-trim correlation-based

trim-time reduction solution is similar to statistical analog test

compaction [24], [25], which has been extensively researched

in the past and wherein a subset of tests are omitted and the

corresponding pass/fail decision is predicted as a function of

the remaining tests, using trained statistical models. In our

case, however, much more elaborate statistical models are

required in order to select the trim-codes that optimize the

performances of each chip.

II. PROPOSED METHODOLOGY
To effectively reduce the trim time and cost, the proposed

methodology sets out to:

• Model the trim codes of a subset of trims as a function

of the measurements collected from conventionally per-

forming the rest of the trims.

• Identify appropriately sized subsets of trims which are

cost-effective in predicting the remaining trim codes.

Below, we first describe the modeling process and we then

investigate two solutions to the optimal trim selection question.

A. Trim Code Modeling
The input to the proposed solution is limited to the measure-

ments obtained while performing a subset of trims on a fabri-

cated chip and, more specifically, the pre-trim performances.

The desired output is the integer representation of the optimal

trim code for the rest of the trims. Training a model capable of

directly predicting the trim codes for a subset of trims based

on the pre-trim performance measurements of another subset is

challenging, due to the complexity of the underlying relations.

To address this challenge, the proposed modeling approach is

split into two stages. The first stage models aim to infer the

pre-trim performances of the omitted trims based on the pre-

trim performances of the conventionally executed trims. In

essence, these models serve as feature generators to assist the

second stage models and are based on the well-documented

existence of performance correlation in analog/RF ICs [16],

[17], [24], [25]. The second stage models are, in turn, used to

infer the trim code as a function of the pre-trim performance

measurement of a chip and the desired post-trim performance

value to which the chip must be calibrated.

1) Modeling Stage A - Pre-Trim Performance Prediction:
An overview of the first-stage set of models is shown in Figure

1 (a). Prior to deployment of these models, which are based

on Multivariate Adaptive Regression Splines (MARS) [26],

a training phase is required. Training is performed using a

dataset containing the pre-trim performances of both the subset

of trims to be retained and the subset of trims to be predicted,

measured on a statistically-significant conventionally-trimmed

set of chips. During training the MARS model uses its built-in

feature selection algorithm to prune features based on a cross-

validation score. Herein, we will use N to denote the set of

�
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all trims, X to denote the set of trims which will be retained

and executed conventionally in production, and N-X to denote

the set of trims that will be predicted. We will also use |N|,
|X|, and |N-X| to denote the cardinality of these three sets,

respectively. Selection of the subset of |X| trims that should

be retained is discussed in Section II-B. During the production

phase, the conventional trimming process is performed only for

the trims in the X subset. The measured pre-trim performances

are, then, passed to the trained models which, in turn, predict

the pre-trim performances for the trims in the N-X set.

2) Modeling Stage B - Trim Code Prediction: An overview

of the second-stage set of models is shown in Figure 1 (b).

Each of these models, which are also based on Multivariate

Adaptive Regression Splines (MARS) [26], corresponds to a

specific trim in the N-X set. Similar to stage A, a training

phase is required, during which the data from a statistically-

significant conventionally-trimmed set of devices is used.

During training, the pre-trim performance measurement and

the Δ performance are used as features, while the trim code

is used as the target variable. Δ performance is the difference

between the desired post-trim and the pre-trim performance.

The trained models can then be used in production to predict

the required trim codes based on the pre-trim performance and

the desired Δ performance.

Our overall inter-trim correlation-based trim time reduction

solution combines the models from the two aforementioned

stages. For every produced IC, all trims in set X are performed

using the conventional trimming process. The measured pre-

trim performances are passed to the corresponding models

from Stage A, which predict the pre-trim performances for

the N-X subset of trims. These |N-X| predicted pre-trim

performances, along with calculated Δ performance required

to reach a desired target for each of the |N-X| trims, are passed

to Stage B models. Subsequently, the Stage B models infer the

trim codes, which are then recorded and stored in the on-die

memory to complete the trimming process.

B. Trim Selection Algorithm
Selection of a set of trims with low cardinality and high

predictive power is essential to the success of the proposed

method. To this end, we explored two trim selection solutions,

one based on a statistical heuristic algorithm and the other

based on an evolutionary algorithm.

1) Statistical Heuristic Algorithm: The proposed statistical

heuristic-based trim selection solution is described in Algo-

rithm 1. As shown, the inputs to the algorithm are the pre-trim

performance matrix for all available |N| trims, reciprocal noise

sensitivity vector and reciprocal training errors for Stage B

models, and the desired number |X| of trims to be selected. The

first step of the algorithm calculates the Pearson correlation

coefficient matrix for all pre-trim performances. In order to

identify a trim that is the best predictor choice, we find the

index of the trim that has the maximum sum of absolute corre-

lation coefficients (Algorithm 1, Lines [2-6]). After assigning

the identified trim to the X set, an elimination step follows

which seeks to exclude trims that are highly correlated to the

1 def HeuristicTrimSelection(ptf, ts, te, k):
Input:

ptf: Pre-trim performances matrix for all N trims,

ts: Vector of noise sensitivity reciprocals of

Stage B models for all N trims,

te: Vector of training error reciprocals of Stage

B models for all N trims,

k: number of desired predictors

Result: List of optimal subset of trims to be used

as predictors

2 corr matrix = PairWiseCorrelations(ptf);

3 row sum = RowSum(corr matrix);

4 X = [ ];

5 for i in range(k) :
6 max sum = findMaxIndex(row sum);

7 X.append(max sum);

8 while length(NX) < length(ptf)-k :
9 error = [ ];

10 for j in range(length(ptf) :
11 corr = corr matrix[max sum][j];

12 error.append(corr*ts[j]*te[j]);

13 rhc = findMaxIndex(error);

14 corr matrix.remove(rhc);
15 corr matrix.remove(max sum index);

16 return X

Algorithm 1: Statistical Heuristic-Based Trim Selection

previously identified trim. This elimination step assists with

reducing the redundancy of the selected trims in the X subset.

Moreover, the noise sensitivity and training error of Stage B

models is taken into account to ensure that the selected trims

can be used to build robust trim code prediction models. At

the end of this iteration, all identified trims are excluded from

further analysis, and the process is repeated until the desired

number of trims has been reached.

2) Genetic Algorithm: Genetic algorithms are well suited

for optimization problems with a large search space, especially

when the cardinality of the solution (i.e., the desired number

of retained trims) is undefined. Herein, we use NSGA-II [27],

an elitist multi-objective genetic algorithm, characterized by

the following evolutionary parameters and operators:

• Initial population: The solution domain is represented

as a gene, consisting of an array of ones representing the

trims belonging to the subset X and zeros representing

the trims belonging to the subset N-X. The initial gene

pool is randomly generated to increase diversity.

• Fitness function: Two fitness functions drive the gene

selection of the Genetic Algorithm, one penalizing genes

with a higher number of 1s (i.e., trims assigned to

subset X) and the other penalizing higher compounded

prediction errors for Stage A and Stage B models. The

compounded prediction error fitness function is defined

as:

error 1 =
1

k

k∑

j

⎧⎨
⎩

(pt actj − pt predj)
2

USLj − LSLj

⎫⎬
⎭ (1)

�
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error 2 =
1

k

k∑

j

|tc actj − tc predj | (2)

fitness function 2 =

|N|−|X|∏
{error 1 × error 2} (3)

where, pt act and pt pred are the actual and predicted pre-

trim performances, USLj and LSLj are the upper and lower

specification limits for the jth-trim performance, tc act and

tc pred are the actual and predicted trim codes, k is the

number of devices available, and |N |, |X| represent the

cardinality of set N and subset X, respectively.

III. EXPERIMENTAL RESULTS

To evaluate the proposed trim time reduction methodology,

we experimented with a dataset comprising measurements

from fabricated and conventionally trimmed devices. Herein,

we first provide details describing the dataset and then present

the flow of our experiment and discuss our findings.

A. Dataset
Our dataset comes from an RF transceiver IC currently

in production in an advanced technology node and contains

measurements obtained on 5,712 devices. Each device is

subjected to a set N of trims, with |N|=173, involving a

worst-case exhaustive search algorithm in the space of trim-

codes, whereby the optimal trim code is identified for every

trim on every device. For each of the 173 trims and for

every one of the 5,712 devices, our dataset contains the pre-

trim performance, the default trim code for which it was

measured, the post-trim performance, the final trim code for

which this was achieved, as well as the upper and lower

specification limits. Without loss of generality, we assume that

each trim search incurs, on average, the same cost. Therefore,

time savings from predicting trim codes instead of executing

the conventional trim searches is linearly proportional to the

number of predicted trims. A weighted version of the problem

may also be formulated as a straightforward extension of this

work to account for differences in trim code search cost.

B. Experimental Flow & Results
Our experiment starts with randomly dividing the dataset

into a training set and a test set of equal size (i.e., 50/50 split).

The training set is used for the purpose of training the two sets

of regression models, as described in Section II, as well as

for selecting the subset of X of trims that are conventionally

performed through the heuristic of Section II-B or the genetic

algorithm of Section II-B2. The test set, on the other hand, is

used for evaluating the accuracy of the trained models and the

trim selection solutions. Using these two datasets, we seek to

evaluate the accuracy of the following:

Pre-Trim Performance Prediction Models: First, we sweep

the number of retained trims from |X|=120 down to |X|=40 in

increments of 20. For each value of |X|, we select randomly

a subset of |X| trims and we use the training set to train re-

gression models for predicting the remaining |N|-|X| pre-trim

performances from the retained |X| pre-trim performances.

The trained models are then applied to the test set to obtain

Fig. 2: Accuracy of Pre-Trim Performance Prediction Models

Fig. 3: Accuracy for Trim Code Prediction Models

the predicted pre-trim performances and compare them with

the measured ones. The box-plots in Figure 2 summarize the

prediction error for each value of |X|. For each device in the

test set and for each predicted trim, the Percentile Specification

Error (PSE) is computed as the absolute difference of the

predicted and actual pre-trim performance, expressed as a

percentage of the specification range for this performance (i.e.,

upper limit - lower limit). The results reveal that:

(i) Very high correlation exists between pre-trim performance

measurements. Indeed, even when randomly choosing only

40 out of the 173 pre-trim performances as predictors, we

can still predict the remaining 133 with an average PSE of

approximately 12%.

(ii) PSE decreases as |X| increases. Indeed, the above PSE

number drops to approximately 9% for |X|=80 and 7% for

|X|=120, as more correlation can be exploited when more trims

are performed. We note that this result is hardly surprising, as

the high correlation between analog/RF IC performances has

been extensively studied and documented in the literature (e.g.,

alternate test [16], machine learning-based test [17], analog

test compaction [24], [25]).

Trim-Code Prediction Models: Next, we use the training set

in order to train a regression model for each of the 173 trims.

These models use the measured pre-trim performance along

with the difference between the target post-trim performance

and the measured pre-trim performance in order to predict

the trim-code required to achieve the target. These models are

then applied to the test set and the results are summarized in

Figure 3, where the average difference between the predicted

and actual trim code is provided for each of the 173 trims.

The results confirm that the accuracy of these models is very

high: on average, the difference between the actual trim code

and the predicted trim code is a small fraction of one code

value away. Considering that these trim codes can take one of

�
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either 32 or 64 values, this error is almost negligible.

Complete Method: Random vs. Heuristic Trim Selection:
Having confirmed the accuracy of the two sets of constituent

models, we proceed to evaluating the overall trim time reduc-

tion method proposed in Section II. Specifically, we sweep

the number of retained trims from |X|=120 down to |X|=40 in

increments of 20 and, for each value of |X|, we select either

randomly or through the proposed heuristic a subset of |X|
trims. Using the training set, we train regression models for

predicting the remaining |N|-|X| pre-trim performances from

the retained X pre-trim performances. The trained models are

then applied to the test set, in order to predict the|N|-|X|
pre-trim performances from the selected |X| pre-trim perfor-

mances. Next, the |N|-|X| predicted pre-trim performances for

the devices in the test set are processed by the the trim-

code prediction models, which were trained as described

in the previous paragraph, to predict the trim code for the

target performance. As a target performance, we use the post-

trim performance that each device was trimmed to using the

conventional approach, since for that value we know the actual

trim-code and can, therefore, use it as ground truth to quantify

the accuracy of our method. The results for the 5 selected

values of |X|, for both random and heuristic selection of the

|X| trims are summarized and contrasted in Figures 4 (a)-(e).

In each of these 5 plots, the linear-scale x-axis represents

the absolute difference between the actual and the predicted

trim code, while the logarithmic-scale y-axis represents the

number of predictions that were made. This number is equal

to the number of devices in the test set (i.e., 2,856) multiplied

by the number of trim codes that were predicted (i.e., 173-|X|).
Results for random and heuristic selection are shown side-by-

side for ease of comparison. In essence, for each value of

trim-code error, the corresponding pair of blue and orange

bars reflects how many trim-code predictions were made with

such error by our method, when selection of the |X| trims

is done through heuristic and random approach, respectively.

Based on these results, we point out the following:

(i) Overall, the proposed method is very effective in predicting

the trim code required to meet a post-trim performance target.

Indeed, for the vast majority of predictions, our method yields

the same trim code as the conventional trim code search. For

example, as shown in Figure 4 (a), among the 151,368 trims

that were predicted for our test set when |X|=120, 148,492

(i.e., 98.10%) were predicted with zero error for heuristic

selection and 127,543 (i.e., 84.26%) for random selection.

Furthermore, even when the prediction error is not zero, the

absolute difference between the actual and predicted trim code

is very small. For example, only a handful of trim codes were

predicted with an error of more than 3 codes away when

|X|=120 and heuristic selection is used.

(ii) As the number of conventionally performed trim searches

decreases, the accuracy of the proposed method gradually

also degrades. This is expected, as a smaller value of |X|
offers fewer measurements and, thereby, less correlation that

can be leveraged to predict the remaining trim-codes. This

degradation, however is very graceful. For example, as shown Fig. 4: Accuracy of Proposed Trim Code Prediction Method

�

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:44:32 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5: NSGA-II Pareto Front Evaluation

in Figure 4 (c), among the 265,608 trims that were predicted

for our test set when |X|=80, 249,149 (i.e., 93.80%) were

predicted with zero error for heuristic selection and 220,189

(i.e., 82.90%) for random selection. Similarly, as shown in

Figure 4 (e), even when only X=40 trims are conventionally

performed, among the 379,848 trims that were predicted for

our test set, 316,838 (i.e., 83.41%) were predicted with zero

error for heuristic selection and 303,954 (i.e., 80.02%) for

random selection. It is also important to note that our method

enables exploration of the trade-off between the trim code

prediction error and the savings of the proposed method, as

expressed through lowering the value of |X|.
(iii) The proposed greedy heuristic significantly outperforms

the random selection approach. Not only does it result in a

slightly higher percentage of trim codes predicted with zero

error across all five charts in Figure 4, but also it drastically

reduces the difference between the actual and the predicted

codes when the error is non-zero. This is reflected in the

fact that the distributions of blue bars in Figures 4 (a)-(e) are

condensed closer to the y-axis.

Genetic Algorithm-Based Trim Selection: Lastly, we evalu-

ate the effectiveness of the Genetic Algorithm in selecting the

subset of |X| trims that should be conventionally performed

in order to accurately predict the trim codes for the remaining

|N|-|X| trims, as discussed in Section II-B2. Once again, the

training set is used for the purpose of evaluating the fitness

of the selected subset of conventionally performed trims as

the Genetic Algorithm proceeds through multiple generations,

while the test set is used for reporting the accuracy of the

selected subsets in predicting the remaining trim codes. In

this experiment, we ran the NSGA-II algorithm with an initial

population of 10 randomly populated genes and we allowed

it to proceed through 60 generations. Fitness of the surviving

genes from every generation are plotted in the 2-dimensional

fitness space in Figure 5, depicting the pareto-optimal front

that has been explored by the Genetic Algorithm. The pareto-

optimal front, which includes the solutions shown in red,

consists of the best choices found by the algorithm. Solutions

show in blue, on the other hand, are dominated by the pareto-

front and should not be selected as better options exist.

To further assess the quality of the pareto-optimal solutions,

we compare the accuracy of the complete trim code selection

method when the subset of |X| conventionally performed trims

is chosen through the Genetic algorithm and the heuristic

approach, respectively. Figure 6 summarizes the results of

this comparison for a randomly chosen value of |X|=66. Once

Fig. 6: GA vs. Heuristic Comparison for |X| = 66

again, the linear-scale x-axis represents the absolute difference

between the actual and the predicted trim code, while the

logarithmic-scale y-axis represents the number of predictions

that were made, in this case 2,856 devices multiplied by 107

predicted trims, for a total of 305,592 predictions. For each

value of trim-code error, the corresponding pair of blue and

orange bars reflects how many trim-code predictions were

made with such error by our method, when selection of the |X|
trims is done through the genetic algorithm and the heuristic

approach, respectively. The results show that, when NSGA-

II is used to select the |X| trims that are conventionally

performed, 279,128 out of the 305,592 trim code predictions

(91.34%) have zero error, while when the heuristic approach

is used, this number is somewhat smaller, namely 271,640

(88.89%). Furthermore, the blue distribution is condensed

closer to the y-axis, revealing that even through a modest

number of 60 generations, the genetic algorithm results in

smaller error than the heuristic approach for predictions where

the error is not zero. Similar results following the same trends

have been observed for all other points of the pareto-optimal

font, confirming that the Genetic Algorithm is superior to the

heuristic approach for selecting the subset of |X| trims that

should be conventionally performed.

IV. CONCLUSION

This work investigated the effectiveness of a machine

learning-based approach to reducing the time required for

trimming the performances of a fabricated analog/RF IC by

leveraging correlation across multiple trims. The proposed

approach selects a subset of trims to be performed in the con-

ventional manner and utilizes the pre-trim performance mea-

surements of these trims to predict the pre-trim performance

measurements of the remaining trims through trained non-

linear regression models. Subsequently, it uses these predicted

pre-trim performances in order to predict the trim code that is

required to achieve a post-trim performance target through a

second set of trained non-linear regression models. As demon-

strated experimentally using actual data from a contemporary

analog/RF IC currently in production, intelligent selection of

the subset of trims that need to be conventionally performed,

alongside efficient training of the regression models, facilitates

accurate prediction of the optimal codes for the omitted trims

while drastically reducing the number of retained trims and,

thereby, the time and cost of executing the corresponding trim-

code search algorithms.
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