
Test Requirement Analysis for Low-Cost Hierarchical Test Path Construction∗

Yiorgos Makris
EE Department - Yale University

New Haven, CT 06520
yiorgos.makris@yale.edu

Alex Orailoglu
CSE Department - U.C. San Diego

La Jolla, CA 92093
alex@cs.ucsd.edu

Abstract
We propose a methodology that examines design mod-

ules and identifies appropriate vector justification and
response propagation requirements for hierarchical test.
Based on a cell-level analysis and transparency composi-
tion methodology, test requirements for a module are de-
fined as a set of fine-grained input and output bit clusters
and pertinent justification and propagation values. The
identified test requirements are independent of the actual
test set and are adjusted to the cell-level connectivity and
inherent regularity of the module. As a result, they com-
bine the generality required for fast hierarchical test path
construction with the accuracy necessary for minimizing
the incurred DFT hardware overhead, thus fostering cost-
effective hierarchical test. Experimental results on several
modules verify the ability of the proposed methodology to
moderate the cost of hierarchical test path construction
through accurate, compact, and highly parametrizable test
requirement definition.

1. Introduction

The ability of hierarchical methodologies to reduce test
generation complexity has been counterweighed by the
hardware overhead incurred for accessing and testing in-
dividually each module in the design. The attainment of
hierarchical test is thus moderated and its applicability is
reduced. Such overhead is attributed to two closely related
tasks, namely, the construction of hierarchical test paths and
the definition of test requirements for each module.

Due to complexity considerations, hierarchical test path
construction methods [1, 2, 3, 4] operate on high-level de-
sign descriptions. Raising the level of abstraction, however,
comes with a loss in precision, which in this case limits
such methods to the identification of only a few coarse hi-
erarchical test paths. As a result, the module under test is
treated as a black box and no information pertaining to its
inherent test requirements is utilized, implicitly assuming
that all possible vectors and responses need to be justified
and propagated, respectively. Yet almost never are all pos-
sible vectors and all possible responses required for testing

∗This work is supported in part through a research grant from Intel
Corporation and the University of California MICRO program.

a module. Furthermore, transparent accessibility to the full
input and output set of each module is rarely inherent in
designs. Consequently, this overkill in test requirement def-
inition results in excessive and controversial hardware over-
head in order to establish transparent hierarchical test paths.

Moderating the cost of hierarchical test path construction
through an informed test requirement definition calls for an
analysis methodology that satisfies the constraints imposed
by the overall flow of hierarchical test shown in Figure 1.
Since lack of appropriate vector justification and response
propagation behavior will result in costly DFT hardware,
test requirements need to be precise, almost resembling the
actual test. The complexity of justifying and propagating
exact test, however, is equivalent to the complexity of full
circuit test generation. Therefore, hierarchical test methods
rely on the construction of hierarchical test paths capable of
justifying and propagating all vectors and responses. Con-
sequently, test requirements also need to be general, almost
resembling the symbolic nature of hierarchical test paths.

Tackling this trade-off between general and precise test
requirement definition requires an understanding of the
severity imposed by test requirements on the construction of
hierarchical test paths. An efficient test requirement identi-
fication method should take this assessment into account,
adjusting accordingly the generality of the identified test
requirements and thus the number and granularity of the
necessary hierarchical test paths. Furthermore, potential
regularity in the module connectivity should be exploited
and test requirements should be defined in a compact and
parametrized fashion.

ATPG-like

Search

Algorithm

Precise Test

Vectors &

Responses

Symbolic Test

Vectors &

Responses

Transparent

Hierarchical Test

Path Construction

Time and Space

Complexity

of Search

Lack of

Inherent

Transparency

DFT for

Simplifying Search

(e.g. SCAN)

DFT for

Transparency

(e.g. Bypass MUX)

Test Requirements
 Translation Method
 Limitations
 Cost

ALTERNATIVE TEST REQUIREMENT DEFINITIONS FOR MODULE UNDER TEST

Module

Under

Test

Upstream Vector

Justification

Logic

Downstream Response

Propagation

Logic

HIERARCHICAL DESIGN

Figure 1. Precise vs. Symbolic Test Requirements

In this paper, we propose a test requirement analysis
methodology that exploits recent research efforts in fine-
grained transparency extraction and hierarchical test path
construction [5] in order to meet the aforementioned objec-
tives. A cell-level analysis and a transparency-based sym-
bolic path composition result in definition of test require-
ments as a set of sub-word input and output bit clusters.
Cell-level analysis supports compactness of the identified
test requirements, while sub-word bit clusters enhance their
accuracy and symbolic paths guarantee their generality.

Related work is discussed in Section 2, followed by an
examination of the severity imposed by test requirements
on hierarchical test path construction in Section 3. The pro-
posed test requirement identification methodology is intro-
duced in Section 4 and the appropriate granularity of basic
cells is discussed in Section 5. Adjustment of test require-
ment granularity to the inter-cell connectivity structure is
examined in Section 6 and transparency-based hierarchical
test path identification is described in Section 7. The pro-
posed methodology is demonstrated through examples in
Section 8 and hierarchical test path severity metrics along
with experimental results are provided in Section 9.

2. Related Work

While previous methods in hierarchical test path con-
struction have not taken into consideration the inherent test
needs of the module under test (MUT), a number of ap-
proaches that resemble closely the test requirement identifi-
cation problem exist in related fields. The objective of test
requirement identification for hierarchical test, however, is
different than the traditional concept of C-Testability [6]
commonly used in Built-In Self-Test and Iterative Logic Ar-
ray Test. The objective of test requirement identification
for BIST [7, 8, 9, 10], for example, is to derive a compact
test set that can be easily generated on chip. Analogously,
the objective of test requirement identification for ILA test
[11, 12, 13] is to exploit regularity and combine test ap-
plication across cells, minimizing the total test application
time. In contrast to these approaches, the objective of the
proposed methodology is to identify test requirements that
reduce the severity imposed on hierarchical test path con-
struction and thus the corresponding hardware overhead.

3. Hierarchical Test Path Severity

Hierarchical test methods rely on symbolic paths for
translating the test set of a module into global design test
instead of performing vector-by-vector test translation. Es-
tablishing symbolic paths capable of justifying all vectors,
however, imposes strenuous requirements on the surround-
ing logic and has a direct impact on the incurred DFT over-

MODULE

TS1={00, 11}

TS2={01, 10}

TS3={00, 01}

TS4={10, 11}

TS5={00, 01, 10}

MODULE

TEST SET

(A1, A1) : 1 Free Variable

(A1, A1') :1 Free Variable

(V, A1) : 1 Free Variable

(V, A1) : 1 Free Variable

(A1, A2) : 2 Free Variables

PATH REQUIREMENT

(a)

(b)

TS6=

{001, 010, 101, 110}

TS7=

{010, 100, 110, 001}

TEST SET

(A1, A2, A2') :

2 Free Variables

(A1, A2, A3) :

3 Free Variables

PATH REQUIREMENT

Figure 2. Test Requirement Severity Examples

head. As a result, hierarchical test methods have been criti-
cized for the unnecessary generalization of the test require-
ments. But is it always the case that symbolic test require-
ments defined on a particular bit cluster impose more de-
manding requirements on hierarchical test paths than a set
of exact test vectors?

Answering this question requires an understanding of the
severity incurred by an exact test vector set on hierarchical
test approaches. Given a set ofk-bit test vectors and de-
pending on the number and the distribution of values ap-
pearing on each subset of thek-bits, certain restrictions are
imposed on the number of primary inputs required and the
degrees of freedom necessary between them. Bits that ob-
tain always identical or always inverse values throughout
the test set only require one free variable. It is evident that
the number of free variables required for a particular set of
test vectors is not always equal to the width of the vectors.
But at a certain set density point, the full width is required;
essentially, we can see that once more than half of the pos-
sible values are in the set, no bit can be inferred from the
rest, necessitatingk free variables for justifying the test set.

Consider for example the2-input module of Figure 2(a)
and the provided alternative test sets. Test requirements for
each bit may be either a constant′0′ or ′1′ value symboli-
cally represented by′V ′, or a free variable represented by
′A′. Bits that are not required in a test set are represented
by ′X ′. ForTS1, a hierarchical test path with one free vari-
able,A1, at its inputs could be sufficient for satisfying the
test requirements. The same observation is valid for test set
TS2. For TS3 andTS4, a hierarchical test path with one
free variable,A1, and a constant at its inputs would again
be sufficient. Once a test set with3 vectors is reached, how-
ever, such asTS5, a2-bit hierarchical test path with no cor-
relation between the bits is necessary. This requirement is
almost as severe as requiring two free variables,A1 andA2,
through the hierarchical test path. In practice, a2-bit path
for providing the two free variables is what hierarchical test
methods would establish in this case.

CELL

. . .

m
 n

. . .

k
 l

'A'

'A'

'X'

'X'

'X'

'X'

'A'
 'A'
'A'
 'A'

MODULE

(a)

Surjective Path
 Injective Path

Surjection Activation

Constants

Injection Activation

Constants

CELL
 . . .
m
 n
. . .
k
 l

P={Test Pattern Values}
 'X'

'X'

'X'

'X'

V

j

V

p

V

t

V

r

MODULE

(b
)

R={Test Response Values}

k>=l
 n>=m

k>=l
 n>=m

Figure 3. Proposed Methodology vs. Exhaustive Test Requirement Analysis

Similarly, for the3-input module of Figure 2(b),TS6 can
be satisfied through a hierarchical test path with two free
variables,A1 andA2, at its inputs. However,TS7 requires
three free variables,A1, A2, andA3. A careful observa-
tion reveals that unlike inTS6, in TS7 every2-bit subset of
the required bits obtains more than half of the possible val-
ues, thus necessitating a2-bit hierarchical test path with no
correlation between the inputs. Since this holds for every
subset, from a hierarchical test path construction perspec-
tive, the severity of the combined requirement is equivalent
to a full 3-bit symbolic path.

Given the symbolic nature of hierarchical test translation
paths, there is, evidently, a threshold for the number and
distribution of vectors in a test set, over and above which
the severity of the corresponding hierarchical test path is
equal to that of the full symbolic path. Generalizing the
above observations leads to the following condition:

• Hierarchical Test Path Severity Threshold Condi-
tion: The hierarchical test path construction severity
of a set ofk-bit vectors is equivalent to ak-bit sym-
bolic path if every subset of bits obtains more than half
of the possible values.

The above condition signifies when exact test vectors can
be safely relaxed into symbolic test requirements, provid-
ing a starting point for the test requirement identification
methodology discussed in the following section.

4. Proposed Methodology

In order to identify fine-grained test requirements, the
proposed methodology targets each basic cell in a module
and requires that free variables be justified to all the inputs

and propagated from all the outputs of the cell. These sym-
bolic requirements are subsequently translated into a set of
sufficient module inputs and outputs to be controlled and
observed respectively. As shown in Figure 3(a), inputs or
outputs of the cell that are also inputs or outputs of the mod-
ule are directly assigned a free variable requirement′A′.
However, there are alsol cell inputs andm cell outputs that
need to be justified and propagated through the surround-
ing cells. A transparency composition scheme is employed,
identifying a surjective path fromk module inputs to the
l cell inputs, wherek ≥ l, and an injective path from the
m cell outputs ton module outputs, wheren ≥ m. To
activate these transparency functions, a number of module
inputs have to be set to particular constants. The resulting
justification requirements for the module inputs are either a
constant′0′ or ′1′, or a free variable′A′, while the propaga-
tion requirements for the module outputs are free variables
′A′, since the good machine/bad machine response pair has
to be always distinguishable. The remaining module inputs
and outputs are assigned to′X ′.

The transparency-based scheme is a relaxed test require-
ment analysis for the cell. An exact methodology should
be capable of identifying a reduced set of module inputs
and outputs through which all test vectors and responses re-
quired at the inputs and outputs of the cell can be justified
and propagated. In Figure 3(b) for example, the cell inputs
that are also module inputs should be assigned toP , the
set of required test vectors. Similarly, the cell outputs that
are also module outputs should be assigned toR, the set of
required test responses. For thel cell inputs andm cell out-
puts that are justified and propagated through the surround-
ing cells, exact analysis is more complicated. Assume that
Vj , Vj ⊆ 2l, is the set of values that need to be justified
to thesel inputs of the cell, according to the test vectors.

Similarly, assume thatVp, Vp ⊆ 2m, is the set of values
that needs to be distinguishably propagated from thesem
outputs of the cell, according to the test responses. Essen-
tially, a setVt, Vt ⊆ 2k, and a setVr, Vr ⊆ 2m, such that
|Vj | = |Vt| and|Vp| = |Vr|, are required, with the module
implementing a functionf from Vj to Vt and a functiong
from Vp to Vr. Then,Vt andVr would be the remaining test
requirements at the module inputs and outputs.

Such a value-based reasoning for identifying the setsVj ,
Vt, Vp, andVr, providing exact test requirements, is overly
time-consuming. Furthermore, as discussed in the previ-
ous section, exact vectors do not always impose less severe
constraints on hierarchical test path construction. There-
fore, the transparency-based scheme described above is em-
ployed, resulting in a simpler and faster identification of test
requirements, defined as combinations of constant values
′0′ and ′1′, symbolic values′A′ and don’t care values′X ′

on input and output bit clusters of the module. Yet the suc-
cess of the proposed methodology depends on the choice of
the cell granularity and the identification of surjective and
injective paths through the surrounding cells. These issues
are discussed in the following sections, where detailed so-
lutions are proposed.

5. Cell Granularity

The granularity of the basic cell on which the proposed
analysis is performed is crucial to the severity imposed by
the identified test requirements on hierarchical test paths.
Appropriate selection of the cell granularity is based on sev-
eral factors. First of all, the selected cell should satisfy the
severity threshold condition, as it guarantees the accuracy
of symbolic test requirements at the boundary of the cell.
Repetitive cell structures should also be considered, since
they result in regular and highly parametrizable test require-
ments. The size and the number of cells should also be taken
into account, due to their direct impact on the complexity of
test requirement identification.

An examination of several basic cells commonly found
in standard design modules, reveals that they constitute the
appropriate granularity level where hierarchical test require-
ment identification should be performed. More specifically,
due to the dense connectivity structure within such basic
cells, as compared to the sparser inter-cell connectivity,
gate-level test requirements satisfy the severity threshold
condition of Section 3. Therefore, they impose the same
severity on hierarchical test paths as the full symbolic path,
to which they can safely be relaxed. Figure 4 shows ex-
amples of four cells and the corresponding gate-level tests1

which, as demonstrated, satisfy the severity threshold con-
dition. Cells of this granularity level are the basic compo-

1Tests were generated using ATALANTA [14] with the random fill op-
tion turned off.

A

B

C

D

FULL ADDER CELL

B

C

D

NON-RESTORING DIVIDER CELL

A

S

S

C

D

E

A

B

MULTIPLY-ADD CELL

RESTORING DIVIDER CELL

B

C

A

E

S

D

Vectors:

ABC

100

010

001

101

110

000

Responses:

DE

10

01

00

Vectors:

ABCS

0X01

0100

1000

0X10

1101

0X11

1100

Responses:

DE

01

00

10

Hierarchical Test

Path Severity:

Justify 'AAAA' at ABCS

Propagate 'AA' from DE

Hierarchical Test

Path Severity:

Justify 'AAA' at ABC

Propagate 'AA' from DE

Vectors:

ABCS

1000

0000

0101

1100

1010

0010

0100

Responses:

DE

01

00

10

Hierarchical Test

Path Severity:

Justify 'AAAA' at ABCS

Propagate 'AA' from DE

Vectors:

ABCS

010X

111X

110X

0110

0111

Responses:

DE

01

00

10

11

Hierarchical Test

Path Severity:

Justify 'AAAA' at ABCS

Propagate 'AA' from DE

ABCS

0001

1000

0011

1011

1001

E

E

Figure 4. Cells Satisfying the Severity Threshold

nents of several arithmetic circuits, such as adders, array
multipliers, restoring and non-restoring array dividers, and
square-rooters [15].

Being the minimum repetitive entities in the design,
basic cells allow exploitation of possible regularity and
reduction of analysis complexity, without necessarily re-
lying on homogeneous designs. With the exception of
boundary cells, only prototypical cells need to be analyzed
and the corresponding test requirements are defined in a
parametrized way, in order to reduce the database storage
required. Furthermore, regular requirements incur regular
DFT, which can be combined across the requirements of
several cells and be highly optimized. These benefits are
further demonstrated through examples in Section 8.

6. Test Requirement Granularity Adjustment

The above analysis justifies that test requirement identifi-
cation at a finer granularity than the basic cell level does not
provide hierarchical test path severity reduction. Depending
on the inter-cell connectivity, however, the derived test re-
quirements across several cells may also satisfy the severity
threshold condition. Therefore, the test requirement gran-

CELL

#1

CELL

#3

CELL

#4

CELL

#2

CELL

#5

IN1

IN2

IN3

IN4

IN5

IN6

O1

O2

O3

O4

O5

O6

EXAMPLE TEST REQUIREMENTS:

 IN1 IN2 IN3 IN4 IN5 IN6 O1 O2 O3 O4 O5 O6

A A A V V X A A X X X X

V V X A A A X X A A A A

A A A A A A A A A A A A

A A A V V X A A X X X X

V V X A A A X X A A A A

A A A A A A A A A A A A

CELL #1:

CELL #2:

CELL #3:

CELL #4:

CELL #5:

Combined

Requirement:

Figure 5. Granularity Adjustment Example

ularity should be adjusted accordingly, resulting in a com-
pact set of test requirements that are as symbolic as possible
but do not increase the severity imposed on hierarchical test
path construction.

The proposed methodology considers the inter-cell con-
nectivity and adjusts the granularity level accordingly,
through a structural analysis of the requirements and the
paths for each cell. If the paths required for accessing and
testing a cell fully incorporate additional cells, then the cells
are combined and test is applied concurrently to them. For
example, consider the connectivity structure shown in Fig-
ure 5. The surjective and injective paths required for testing
cell]3 fully incorporate cells]1,]2,]4, and]5. It is there-
fore wise to combine test application for all five cells, since
no additional severity is imposed on the corresponding hi-
erarchical test paths.

Another way of explaining this is that the requirements
for testing cells]1,]2,]4, and]5 are subsets of the require-
ments for testing cell]3, and can therefore be discarded.
Consequently, once the test requirements for each cell are
identified at the module boundary, an additional granular-
ity adjustment is made. The severity threshold condition is
examined across the test requirements. If the condition is
satisfied, constant values are relaxed into symbolic paths.
Thus, the accuracy necessary for minimizing the hierarchi-
cal test path severity is complemented with the generality
required for fast hierarchical test path construction.

7. Transparency Path Composition

Within the context of hierarchical test, transparency has
been defined assurjectivefunctions for justifying test vec-
tors to the inputs of the module under test andinjectivefunc-
tions for propagating test responses from the outputs of the
module under test. Surjective and injective functions are

Function

f

k

k

m
l

Function

Inputs

FI

Function

Outputs

FO

Condition

Inputs

CI

Condition

Outputs

CO

S

k

 = {0, ..., 2
k
-1}, S

l

 = {0, ..., 2
l
-1}

(a)

Function

f

Function

g

Function

f

Function

g

Function

f

Function

g

Function

f

Function

g

(b)

FULL

ADDER

A

Z

Cin

Cout

B

FI={A}, CI={B, Cin},

FO={Z}, CO={Cout}

Figure 6. Cell Function Definition and Implications

referred to in the literature asS-PathsandF-Pathsrespec-
tively [16], while bijective functions satisfying both prop-
erties are referred to asI-PathsandT-Paths[17]. Several
variations of surjective, injective, and bijective functions,
includingAmbiguity Sets[1], Transparency Modes[2], and
Transparency Properties[18], have also been used.

The proposed test requirement identification methodol-
ogy relies on the ability to identify transparency functions
through the surrounding cells. Gate-level transparency ex-
traction, however, is a computationally hard problem that
limits the applicability of exhaustive algorithms to very
small circuits. Consequently, a non-exhaustive method ca-
pable of rapidly extracting a wide class of transparency
functions is required. Such a transparency extraction
method is the outcome of recent research results in trans-
parency composition outlined in [5]. The only difference
is that instead of extracting transparency functions from the
inputs to the outputs of the module, transparency functions
should now be extracted from the inputs to internal signals
and from internal signals to the outputs. In all other re-
spects, the methodology proposed in [5] is directly applica-
ble and only the key points are repeated here for the purpose
of completeness.

The proposed transparency composition method is based
solely on function classes and not the actual functions. Cell
functions are distinguished into four classes according to
their inherent transparency behavior and transparency com-
position is examined through combinations of classes. Con-
sider a function,f , implemented by a cell, as shown in Fig-
ure 6(a). The cell has a set of function inputsFI and an
additional set of condition inputsCI that activate the cell
function. Additionally, the cell has a set of function outputs,
FO, and an additional set of collateral outputs,CO, whose
value may be either constant or variable for the values of
FI andCI. Such a function could be defined for exam-
ple on a full adder cell, withFI = (A), CI = (B,Cin),

FO = (Z), andCO = (Cout). Functions implemented by
such cells are not necessarily independent of each other, as
the possible interconnection structures of Figure 6(b) reveal.
Furthermore, this dependence, which we refer to asimpli-
cation, may be bi-directional. The implication is effected
through the condition inputsCI, which may be driven by
theCI, CO, or FO of the implicating cell.

In order to study the possible composition of two func-
tions,f andg, into a bijective function, we categorize the
function of Figure 6(a) into one of four classes, based on
whether it is bijective and on how the implication through
theCIs affects the bijection. In the following definitions,
Sk andSl are the sets of all possible values ofk-bit andl-bit
signals, respectively.

• Type]1 : The function is bijective and the bijection is
independent of the implication throughCIs.

⋃

∀x∈Sk

f(x) = Sk (1)

• Type]2 : The function is bijective for each constant
value on theCIs, but the bijection depends on the con-
stant.

∀y ∈ Sl :
⋃

∀x∈Sk

f(x, y) = Sk (2)

• Type]3 : The function is bijective for some but not
all constant values on theCIs; the bijection may de-
pend on the constant. There exists at least one constant
value for which the function is not bijective.

∃y ∈ Sl :
⋃

∀x∈Sk

f(x, y) = Sk

∧
(3)

∃y ∈ Sl :
⋃

∀x∈Sk

f(x, y) ⊂ Sk

• Type]4 : No constant value on theCIs makes the
function bijective.

∀y ∈ Sl :
⋃

∀x∈Sk

f(x, y) ⊂ Sk (4)

While bijections can be potentially composed out of any
combination of function types, participation of Type]4
functions in bijection composition consistently results in ex-
ponential complexity. As Type]4 functions are inherently
not bijective for any constant implication from surround-
ing functions, they require exhaustive analysis of the com-
posed function. Such bijections are consequently omitted
by the proposed method. However, a wide class of trans-
parency functions can be rapidly composed out of the first
three types based on the following condition:

Process

Process

Are the function

inputs either primary

inputs or function outputs

of other functions to be

composed?

For each combination of transparency

functions of the cells to be composed

BEGIN

For each cell transparency function

Are the function

outputs either primary

outputs or function inputs

of other functions to be

composed?

Find the implication set

from the immediate

neighbouring cells

Find the type of the

function for this

implication set

YES

YES

NO

Are all

functions of

Type #1 or

Type #2?

Is there a

cycle betwen

implications of

Type #2?

YES

NO

NO
 YES

NO

Combination

produces a

transparency

function

END

Use exhaustive algorithm to

find all transparency

functions for each cell

Build a dependency graph

where each cell is a node and

each implication is an edge

Figure 7. Transparency Composition Algorithm

• Transparency Composition Condition: The compo-
sition of Type]1, Type]2, and Type]3 functions yields
a bijection if there exists no cyclic set of implications
between functions of Type]2 and Type]3, and every
participating Type]3 functiong is bijective∀z ∈ Vg,
whereVg is the set of values implicated to functiong.

Under the above condition, Type]3 functions reduce to
Type]1 or Type]2 due to the restricted implication set from
the surrounding functions. In addition, bijection composi-
tion is guaranteed by the acyclicity in the set of implica-
tions. The condition is simple to check, facilitating an ef-
ficient transparency extraction algorithm described in Fig-
ure 7. The condition is only sufficient but not necessary;
therefore some transparency functions composed from the
above types will be omitted. Nevertheless, the algorithm
is capable of rapidly extracting a very wide class of trans-
parency functions, comprising bit cluster level bijections,
surjections, and injections.

Using this transparency composition methodology, the
surjective and injective paths required for each cell may be
identified. Consider for example the circuit shown in Fig-
ure 8. In order to access cell]3, a2-bit transparency path to
GL through cells]1 and]2 is required. Cell]1 provides a
1-bit transparency fromE to G and cell]2 provides a1-bit
transparency fromH to L. An examination of the implica-
tion between the two cells reveals that the function of cell
]1 reduces to Type]2, while the function of cell]2 reduces
to Type]1. Since no cyclic implication between Type]2
and Type]3 cells exists on the graph, the condition holds
and therefore the composed function is a bijection through
which the signalGL may be controlled.

E A B C D F G

0 0 0 0 0 1 1

0 0 1 0 0 1 0

0 1 0 0 1 1 0

0 1 1 1 0 1 0

1 0 0 0 1 0 0

1 0 1 1 0 0 1

1 1 0 1 1 1 0

1 1 1 0 0 1 0

CELL

#1

CELL

#2

A

F

B
 H

C

CELL

#3

L

M
 N

E

D
 J
 K
 O
 P

Cell #1: TYPE #3, E bijects to G for AB=00,01 but not for AB=10,11

Cell #2: TYPE #3, H bijects to L for any FG=00,11 but not for FG=01,10

Cell

#1

Cell

#2

FG=

{00, 11}

No Cyclic Dependency between TYPE#2 and TYPE #3 so Bijection EL to GH is Composed

Dependency Graph

For A=0

Cell #1 is bijective

and becomes a

TYPE #2 function

For FG={00,11}

Cell #2 is bijective

and becomes a

TYPE #1 function

F G H J K L

0 0 0 0 0 1

0 0 1 1 1 0

0 1 0 1 0 0

0 1 1 0 0 0

1 0 0 1 1 1

1 0 1 1 0 1

1 1 0 0 1 0

1 1 1 1 1 1

B={0,1}

G

Figure 8. Transparency Composition Example

CinA0B0A1B1A2B2A3B3

 A A A V V X X X X

 X A A A A V V X X

 X X X A A A A V V

 X X X X X A A A A

FA#1

A0
 B0

Z0

C1
Cin
 FA#2

A1
 B1

Z1

C2
 FA#3

A2
 B2

Z2

C3
 FA#4

A3
 B3

Z3

Cout

Test Justification Requirements:
 Test Propagation Requirements:

FA#1:

FA#2:

FA#3:

FA#4:

 Z0Z1Z2Z3Cout

 A A X X X

 X A A X X

 X X A A X

 X X X A A

FA#1:

FA#2:

FA#3:

FA#4:

CARRY-RIPPLE ADDER

Figure 9. Test Requirements of Carry-Ripple Adder

8. Examples

The proposed test requirement identification method is
demonstrated and evaluated through several example mod-
ules in this section. The first module, shown in Figure 9,
is a simple4-bit carry-ripple adder [15], comprising4 full-
adder cells, such as the one shown in Figure 4. Consider for
example the test requirements forFA]3. According to the
proposed methodology of Section 4,′A′s are assigned to the
inputs and outputs of the cell that are also inputs and outputs
of the module, in this caseA2, B2, andZ2. The′A′ require-
ment onC2 is satisfied through a surjective path fromA1,
B1, while the ′A′ requirement onC3 is satisfied through
an injective path toZ3, activated by any constant value′V ′

on A3, B3. The remaining inputs and outputs,Cin, A0,
B0, Z0, Z1, andCout are assigned′X ′s. The identified
test requirements are symbolic, as necessary for hierarchi-
cal test path construction, but also compact and accurate;
thus close, in terms of precision, to the minimal hierarchical
test requirements of the full adder. Furthermore, the regular
structure of the module allows the test requirements to be
parametrized; therefore, the analysis is performed only for
the prototypical cell and the boundary cases.

74181 ALU

 M'CnA0A1A2A3B0B1B2B3S0S1S2S3

 V V A X X X A X X X A A A A

 V V V A X X V A X X A A A A

 V V V V A X V V A X A A A A

 V V V V V A V V V A A A A A

 A A A X X X A X X X A V V V

 A A A A X X A A X X A A V V

 A A A A A X A A A X A A A V

 A A A A A A A A A A A A A A

 A A A A A A A A A A A A A A

Test Justification Requirements:
 Test Propagation Requirements:

Cell#1:

Cell#2:

Cell#3:

Cell#4:

Cell#5:

Cell#6:

Cell#7:

Cell#8:

Cell#9:

 G'CoP'F3'F2'EqF1'F0'

X X X X X X A A

X X X X A X A X

X X X A A X X X

X A X A X X X X

X X X X X X X A

X X X X X X A X

X X X X X A X X

X X X X A X X X

A A A X X A X X

Cell#1:

Cell#2:

Cell#3:

Cell#4:

Cell#5:

Cell#6:

Cell#7:

Cell#8:

Cell#9:

Cell

#5

Cell

#6

Cell

#8

Cell

#7

Cell

#9

F0'
 F1'
 F2'
 F3'
 Eq
 P'
Co
 G'

Cell

#1

Cell

#2

Cell

#3

Cell

#4

M'
Cn
 S0S1S2S3
A0B0
 A1B1
 A2B2
 A3B3

Figure 10. Test Requirements of 74181 ALU

The second module is the 74181 ALU [11], which unlike
the adder is neither homogeneous, nor regular. This exam-
ple further demonstrates the ability of the methodology to
adjust the identified test requirements to the inter-cell con-
nectivity. The connectivity and the test requirements for
each cell are shown in Figure 10. Based on the granularity
adjustment methodology of Section 6, the test requirements
for the cell pairs(]1,]5), (]2,]6), (]3,]7), and(]4,]8) are
merged. Furthermore, establishing a surjective path to the
10 inputs of cell]9 requires a hierarchical test path to all14
inputs of the ALU. Consequently, the test justification re-
quirements for cells]1 through]8, which are all subsets of
the test justification requirements for cell]9, are discarded.
The final set of test requirements for the ALU is thus ad-
justed to the module connectivity and is shown in boldface.

The third module is a restoring array divider [15] com-
posed of cells such as the one shown in Figure 4. The circuit
and the test requirement analysis are shown in Figure 11.
While the module is not homogeneous, its inherent regu-
larity allows parametrization of the test requirements. Con-
sider, for example, the test requirements for cell]5. The
four inputs of the cells are justified through a surjective path
from D3, Z4, andZ5 and a surjective path fromD2 andZ2.
The two outputs of the cell are propagated through injective
paths to outputsQ2, Q3, andS4. These inputs and outputs
are consequently assigned a test requirement′A′. The re-
maining inputs all require constant values to establish the
injective and surjective paths and are, therefore, assigned

 Z1Z2Z3Z4Z5Z6D1D2D3

 A V V A V V V V A

A V A A V V V A A

A A A V V V A A V

 V A V V A V V V A

 V A V A A V V A A

 V A A A V V A A V

 V V A V V A V V A

V V A V A A V A A

 V V A A A V A A V

 A A X X X X A X X

 A A A V X X A V X

 X A A A V X A V X

Cell

#3

Z2

Cell

#2

Z3

Cell

#1

Z4

Test Justification Requirements:
 Test Propagation Requirements:

Cell#1:

Cell#2:

Cell#3:

Cell#4:

Cell#5:

Cell#6:

Cell#7:

Cell#8:

Cell#9:

Cell#10:

Cell#11:

Cell#12:

Q1Q2Q3S4S5S6

A A X A X X

A A A X X X

A A X X X X

X A A X A X

X A A A X X

X A A X X X

X X A X X A

X X A X A X

X X A A X X

A X X X X X

X A X X X X

X X A X X X

RESTORING ARRAY DIVIDER

' 0'

D1
 D2
 D3

Cell

#10

Z1

Cell

#6

Cell

#5

Cell

#4

Z5

' 0'

D1
 D2
 D3

Cell

#11

Cell

#9

S4

Cell

#8

S5

Cell

#7

Z6

S6

' 0'

D1
 D2
 D3

Cell

#12

Q1

Q2

Q3

Cell#1:

Cell#2:

Cell#3:

Cell#4:

Cell#5:

Cell#6:

Cell#7:

Cell#8:

Cell#9:

Cell#10:

Cell#11:

Cell#12:

Figure 11. Test Requirements of Array Divider

a test requirement′V ′, while the remaining outputs are as-
signed a test requirement′X ′. The granularity of test re-
quirements is once again adjusted using the methodology
of Section 6, and the final set is shown in boldface.

The above examples demonstrate the ability of the pro-
posed methodology to identify symbolic, yet accurate test
requirements defined on fine-grained input and output bit
clusters. The granularity of test requirements is adjusted
to the inter-cell connectivity of the module, in order to fur-
ther reduce the severity imposed on hierarchical test paths.
In addition, while not limited to homogeneous circuits, the
methodology exploits inherent cell regularity, in order to
parametrize and compact the identified test requirements.

9. Severity Metrics and Experimental Results

The objective of the proposed methodology is to identify
test requirements that reduce the severity imposed on hierar-
chical test and the corresponding testability hardware over-
head. To evaluate the burden imposed on hierarchical test
paths, the following two metrics are introduced, reflecting
the severity of test path existence and test path identification
for a module. The underlying assumption for defining the
metrics is that the likelihood of path existence and the com-
plexity of path identification decrease, as the generality of
the path increases. Path generality increases with the width
and with the values attainable at each bit position.

Test Path Existence Severity, reflecting the possibility
that testability hardware will be needed to establish trans-
parency paths due to the generality of the test requirements,
is defined as

TPES(Module) =
∑

∀ Paths

TPES(Path), where (5)

TPES(Path) =
∏

∀ Bits

TPES(Bit), and (6)

TPES(Bit) =





1 if ′X ′

2 if ′V ′

4 if ′A′



 (7)

Test Path Identification Severity, reflecting the possibility
that testability hardware will be needed due to the transla-
tion complexity of exact test requirements, is defined as

TPIS(Module) =
∑

∀ Paths

TPIS(Path), where (8)

TPIS(Path) =
∏

∀ Bits

TPIS(Bit), and (9)

TPIS(Bit) =





1 if ′X ′

2 if ′A′

4 if ′V ′



 (10)

As an example, Figure 12 calculates the controllability
and observability TPES and TPIS of a4-bit carry-ripple
adder for the test requirements imposed by symbolic paths
and by compacted gate-level test. Figure 13, further cal-
culates the metrics for the requirements imposed by non-
compacted gate-level test and by the proposed methodol-
ogy. The controllability metrics C-TPES and C-TPIS for
the four approaches are summarized in Tables 1 and 2, while
the observability metrics O-TPES and O-TPIS are summa-
rized in Tables 3 and 4. Results are also reported in these
tables for the restoring divider and the ALU example cir-
cuits of the previous section. As demonstrated, the coarse-
ness of the symbolic paths results in very high TPES values,
although their generality ensures low TPIS values. On the
other hand, the accuracy of exact test ensures low TPES val-
ues, yet results in high TPIS values due to the complexity of
exact translation. If the test is not compacted the problem
is slightly alleviated but the TPIS values are still orders of
magnitude higher than the TPES values.

The proposed methodology resolves the problem by
combining the generality required for fast hierarchical test
path construction with the accuracy necessary for ensuring
translatability. As a result, the TPES and TPIS values are
of the same order of magnitude2 and close to the minimal
values. Thus, the identified test requirements significantly
reduce the overall burden imposed on hierarchical test.

2Except for controlling the ALU, where the full symbolic path is re-
quired.

TEST PATTERNS - TEST RESPONSES

A3A2A1A0B3B2B1B0Cin CoutZ3Z2Z1Z0

0 0 0 0 1 0 1 1 0 0 1 0 1 1

0 1 0 1 0 1 1 0 1 0 1 1 0 0

1 0 0 1 0 0 1 1 0 0 1 1 0 0

1 1 1 0 0 1 1 0 1 1 0 1 0 1

0 1 0 1 0 0 0 1 0 0 0 1 1 0

1 0 1 0 1 1 1 0 0 1 1 0 0 0

0 0 0 1 1 1 0 0 0 0 1 1 0 1

0 1 1 0 1 0 0 1 0 0 1 1 1 1

4-bit

Carry Ripple

Adder

M

A[3:0]
 B[3:0]

Cin
Cout

Z[3:0]

Symbolic Paths

1 Justification Path: "AAAAAAAAA"

C-TPES(M)=4
9
=262144

C-TPIS(M)=2
9
=512

1 Propagation Path: "AAAAA"

O-TPES=4
5
=1024

O-TPIS=2
5
=32

Compacted Test

8 Justification Paths: "VVVVVVVVV"

C-TPES(M)=8*2
9
=4096

C-TPIS(M)=8*4
9
=20197152

7 Propagation Paths: "VVVVV"

O-TPES=7*2
5
=224

O-TPIS=7*4
5
=7168

8 Distinct Vectors - 7 Distinct Responses

Figure 12. Metric Calculation for Symbolic Paths and Compacted Test

Proposed Methodology

4 Justification Paths:

"XXVAXXVAA"

"XVAAXVAAX"

"VAAXVAAXX"

"AAXXAAXXX"

C-TPES(M)=2
2
*4
3
+2
2
*4
4
+2
2
*4
4
+4
4
=2560

C-TPIS(M)=4
2
*2
3
+4
2
*2
4
+4
2
*2
4
+4
2
=656

4 Propagation Paths:

"XXXAA"

"XXAAX"

"XAAXX"

"AAXXX"

O-TPES=4
2
+4
2
+4
2
+4
2
=64

O-TPIS=2
2
+2
2
+2
2
+2
2
=16

TEST PATTERNS - TEST RESPONSES

(RANDOM FILL TURNED OFF)

A3A2A1A0B3B2B1B0Cin CoutZ3Z2Z1Z0

0 1 1 X 0 0 1 X X 0 1 0 X X

X 0 1 1 X 0 0 1 X X X 1 0 X

0 1 0 X 0 0 0 X X 0 0 1 X X

0 0 0 X 0 1 0 X X 0 0 1 X X

0 0 1 X 0 0 1 X X 0 0 1 X X

X 0 1 0 X 0 0 X 0 X X 0 1 X

X 0 0 0 X 0 1 X 0 X X 0 1 X

X 0 0 1 X 0 0 1 X X X 0 1 X

X X 0 1 X X 0 0 1 X X X 1 0

X X 0 1 X X 0 0 0 X X X 0 1

X X 0 0 X X 0 1 0 X X X 0 1

X X 0 0 X X 0 0 1 X X X 0 1

0 1 X X 0 1 X X X 0 1 X X X

1 0 X X 1 0 X X X 1 0 X X X

1 0 X X 0 0 X X X 0 1 X X X

0 0 X X 1 0 X X X 0 1 X X X

1 1 X X 0 1 X X X 1 0 X X X

Non-Compacted Test

17 Distinct Justification Paths:

(8 have 3 Xs, 4 have 4 Xs, 5 have 5 Xs)

C-TPES(M)=8*2
6
+4*2
5
+5*2
4
=848

C-TPIS(M)=8*4
6
+4*4
5
+5*4
4
*2
4
+4
2
=38144

7 Distinct Propagation Paths:

(3 have 2 Xs, 4 have 3 Xs)

O-TPES=3*2
3
+4*2
2
=40

O-TPIS=3*4
3
+4*4
2
=256

Full

Adder

Full

Adder

Full

Adder

Full

Adder

A0
 B0

Z0

A1
 B1

Z1

A2
 B2

Z2

A3
 B3

Z3

C1
 C2
 C3
Cin
 Cout

Figure 13. Metric Calculation for Non-Compacted Test and Proposed Method

Table 1. Comparison of C-TPES Metrics
C-TPES Symbolic Compacted Non-Compacted Proposed
Metric Paths Test Test Method

Adder 262144 4096 848 2560
Divider 262144 9216 7360 49152
ALU 238435456 425984 65280 238435456

Table 2. Comparison of C-TPIS Metrics
C-TPIS Symbolic Compacted Non-Compacted Proposed
Metric Paths Test Test Method

Adder 512 20197152 38144 656
Divider 512 4718592 3662468 98304
ALU 16384 6979321856 230430714 16384

10. Conclusions

Accurate modular test requirement identification is crit-
ical to the cost-effectiveness of hierarchical test, since the
severity imposed on the corresponding hierarchical test
paths is directly related to the anticipated testability hard-
ware overhead. A thorough understanding of the severity
imposed by exact test patterns as compared to symbolic
test provides the basis for defining appropriate test require-
ments. The proposed methodology identifies a set of fine-
grained, yet adequate input and output bit clusters to be
justified and propagated respectively, through which sym-
bolic test can be applied to each basic cell in the module.
Through an efficient cell-based transparency extraction ap-
proach, the proposed method adjusts the granularity of the
identified test requirements to the module connectivity. Fur-
thermore, the identified test requirements are independent
of particular test sets and can be parametrized to exploit in-
herent repetitive structures and regularity in the design, thus
reducing the analysis time and the corresponding storage.
Most importantly, the identified test requirements combine
the generality required for fast hierarchical test path con-
struction with the accuracy necessary for minimizing the
corresponding hierarchical test path severity. Thus, the DFT
hardware incurred for hierarchical test path construction is
reduced, fostering competitive hierarchical test approaches.

References

[1] B. T. Murray and J. P. Hayes, “Hierarchical test generation
using precomputed tests for modules,”IEEE Transactions
on Computer Aided Design, vol. 9, no. 6, pp. 594–603, 1990.

[2] P. Vishakantaiah, J. A. Abraham, and D. G. Saab,
“CHEETA: Composition of hierarchical sequential tests us-
ing ATKET,” in International Test Conference, 1993, pp.
606–615.

[3] J. Lee and J. H. Patel, “Hierarchical test generation under
architectural level functional constraints,”IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, no. 9, pp. 1144–1151, 1997.

[4] R. S. Tupuri, A. Krishnamachary, and J. A. Abraham, “Test
generation for gigahertz processors using an automatic func-

Table 3. Comparison of O-TPES Metrics
O-TPES Symbolic Compacted Non-Compacted Proposed
Metric Paths Test Test Method

Adder 1024 224 40 64
Divider 4096 1088 832 36
ALU 65536 5632 4064 32

Table 4. Comparison of O-TPIS Metrics
O-TPIS Symbolic Compacted Non-Compacted Proposed
Metric Paths Test Test Method

Adder 32 7168 256 16
Divider 64 69632 47888 272
ALU 256 1441792 1013856 320

tional constraint extractor,” inDesign Automation Confer-
ence, 1999, pp. 647–652.

[5] Y. Makris, V. Patel, and A. Orailoglu, “Efficient trans-
parency extraction and utilization in hierarchical test,” in
VLSI Test Symposium, 2001, pp. 246–251.

[6] M. Abramovici, M. A. Breuer, and A. D. Friedman,Digital
Systems Testing and Testable Design, IEEE Press, 1990.

[7] H. Al-Asaad, J. P. Hayes, and B. T. Murray, “Scalable
test generators for high-speed datapath circuits,”Journal
of Electronic Testing: Theory and Applications, vol. 12, no.
1/2, pp. 111–125, 1998.

[8] I. Voyiatzis, A. Paschalis, D. Nikolos, and C. Halatsis, “R-
CBIST: An effective RAM-based input vector monitoring
concurrent BIST technique,” inInternational Test Confer-
ence, 1998, pp. 918–925.

[9] K. K. Saluja, R. Sharma, and C. R. Kime, “A concurrent
testing technique for digital circuits,”IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 7, no. 12, pp. 1250–1260, 1988.

[10] D. Gizopoulos, A. Paschalis, and Y. Zorian, “An effec-
tive built-in self-test scheme for parallel multipliers,”IEEE
Transactions on Computers, vol. 48, no. 9, pp. 936–950,
1999.

[11] E. J. McCluskey and S. Bozorgui-Nesbat, “Design for au-
tonomous test,”IEEE Transactions on Computers, vol. c-30,
no. 11, pp. 866–874, 1981.

[12] T. Sridhar and J. P. Hayes, “Design of easily testable bit-
sliced systems,”IEEE Transactions on Computers, vol. c-
30, no. 11, pp. 842–854, 1981.

[13] H. Elhuni, A. Vergis, and L. Kinney, “C-Testability of two-
dimensional iterative logic arrays,”IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 5, no. 4, pp. 573–581, 1986.

[14] “ATALANTA combinational test generation tool,” Available
from http://www.ee.vt.edu/ha/cadtools .

[15] B. Parhami, Computer Arithmetic: Algorithms and Hard-
ware Designs, Oxford University Press, 1999.

[16] S. Freeman, “Test generation for data-path logic: The F-path
method,” IEEE Journal of Solid-State Circuits, vol. 23, no.
2, pp. 421–427, 1988.

[17] M. S. Abadir and M. A. Breuer, “A knowledge-based system
for designing testable VLSI chips,”IEEE Design and Test
of Computers, vol. 2, no. 4, pp. 56–68, 1985.

[18] Y. Makris and A. Orailoglu, “RTL test justification and prop-
agation analysis for modular designs,”Journal of Electronic
Testing: Theory and Applications, vol. 13, no. 2, pp. 105–
120, 1998.

