TRANSPARENT: A System for RTL Testability Analysis, DFT Guidance
and Hierarchical Test Generation’

Yiorgos Makris, Jamison Collins, Alex Orailoglu
Reliable Systems Synthesis Lab - CSE Department
University of California, San Diego
La Jolla, CA 92093

Abstract

We discuss a methodology for analyzing the testability of
large hierarchical RTL designs, based upon the existence of
module reachability paths, suitable for automatically deriving
globally applicable test from locally generated vectors. Such
reachability paths utilize module transparency behavior, as
captured by the introduced channel transparency definition.
Lack of transparency and unreachable module I/Os pinpoint
testability bottlenecks apt for efficient DFT modifications.
Application of this methodology on example designs results in
significant fault coverage improvement and test generation
speedup, as compared to complete design gate-level ATPG.

Introduction

Continuous improvements in silicon manufacturing
technology have enabled the realization of extremely large
and complex designs that have by far outpaced the capacity
of the EDA tools to handle them as monolithic entities.
Significant effort has been consequently invested in devising
hierarchical approaches, either top/down or bottom/up, for
accommodating current and future design and test needs.
The hierarchical test generation concept, depicted in Fig. 1,
has been long ago proposed as a promising and viable
alternative to the slow and complex global design test
generation process (1-5). Local test can be quickly and
efficiently generated for each module of a hierarchical
design and consequently translated to global test, applicable
at the complete design boundary.

Although such approaches are independent of the local test
generation mechanism, the actual test vectors and the
targeted fault models, their success has been heavily
dependent on the efficacy of the test translation process.

Praveen Vishakantaiah
Intel Corporation
Hillsboro, OR 97124

Test translation approaches that reason exhaustively on the
functional space of the upstream vector justification and
downstream response propagation logic, such as in (1, 4, 6,
7), are doomed by complexity, despite being complete. DFT
modifications can alleviate this problem by providing
alternative reachability paths, however they are expensive
and need to be incorporated judiciously.

Test transparency related behavior has been alternatively
employed for the surrounding modules, while translating
local into global test (3, 8-10). Although such approaches
make test translation a fast and trivial process when
transparency exists, partial transparency or lack of
transparency, even for a single module, proves catastrophic
for the test translation process. In order to preserve high
fault coverage, an efficient mechanism for defining modular
transparency and guiding DFT modifications to address the
lack of such transparency is necessitated.

In the following sections, we introduce TRANSPARENT, a
system for RTL testability analysis, DFT guidance and
hierarchical test generation, based on the concept of
transparency channels. We first provide an overview of the
system, followed by a detailed discussion of its constituent
parts. We present the channel transparency definition and its
application on module reachability analysis and we discuss
testability bottleneck identification and minimization, along
with its potential for guiding DFT modifications. We then
derive a hierarchical test generation scheme, wherein
reachability paths are utilized for translating local module
vectors into complete design test. Finally, we demonstrate the
proposed methodology on example hierarchical designs and
we report our results in comparison to complete circuit ATPG.

Primary §

1 Primary

Inputs -

* Outputs

Local M odule
Test Generation

Complete Design
Test Generation

Localto Glebal Test
Translation Using Com plete
Functional Space

. Efficient
. Expensive

DFT Modifications
for Module
Reachability

gy » Fast
. Incomplete

Localto Global Test
Translation Using only
Transparency Behavior

FIGURE 1: HIERARCHICAL TEST GENERATION, TEST TRANSLATION AND DFT APPROACHES — BENEFITS & DRAWBACKS

* This work is supported in part through a research grant from Intel Corporation under contract CSE 0129-58678A.

8.6.1

0-7803-5443-5/99/$10.00©1999 IEEE

159

IEEE 1999 CUSTOM INTEGRATED CIRCUITS CONFERENCE

Hierarchical
RTL Design
Description

Local Test
Vectors &
Responses

Modular Local
Test Generation

Design Traversal
Algorithm for
Reachability

Analysis & Test

Translation Path
Identification

Transparency
Channels for
Modules

Testability
Bottlenecks

Translation Paths
& Templates on
Original Design

Globai Test
on Original
Design

Global Taest
on Modified
Design

Test Translation on
Original Design

Test Translation on
Modified Design

Translation Paths
& Templates on
Moditied Design

Bottleneck Resolution
through DFT
Modifications

FIGURE 2: TRANSPARENT ~ SYSTEM OVERVIEW

System Overview

The system TRANSPARENT, described herein, comprises a
methodology for analyzing the testability of RTL hierarchical
design, reporting testability bottlenecks for guiding efficient
DFT modifications and generating test in a hierarchical
fashion. It provides early in the design cycle a hierarchical
testability assessment, based on modular transparency,
without exhaustively reasoning on the complete design
functional space, in order to avoid complexity issues. The
analysis is symbolic and therefore independent of the actual
test vectors, the test generation mechanism and the underlying
fault model. Furthermore, it handles variable bitwidth and
sub-word signal entities and addresses both data and control
path modules, combinational and sequential. The proposed
system is significantly faster than full circuit, gate-level
ATPG, while providing very high fault coverage through few,
yet effective DFT modifications.

An overview of the TRANSPARENT system is depicted in
Fig. 2. Starting with the hierarchical RTL design description,
local test vectors and responses are generated for each
module. Subsequently, a design traversal algorithm examines
the reachability of each module in the design and identifies
test translation paths, based on the notion of transparency
channels that is introduced in the following section. The
traversal algorithm provides the reachability paths and test
translation templates on the original design, based on which
the local test is translated into global design test. It further
reports the identified testability bottlenecks in the design and a
set of alternative reachability paths and test translation
templates, valid on a modified design wherein the bottlenecks
are resolved. These templates are used for obtaining global
test from local vectors on the modified for testability design.
The constituent parts of the system are further discussed in the
following sections.

Testability Analysis
In this section we describe the testability analysis phase of the
TRANSPARENT system. We define the transparency channel
notion and we provide the design traversal algorithm that
examines reachability paths for each module and reports test
translation templates and potential testability bottlenecks.

A. Transparency Channels

The transparency channel definition, introduced in this
section, alleviates the complexity of examining the complete
functional space of each module during test translation. It
constitutes, thus, a search space pruning mechanism that
facilitates an efficient trade-off between completeness and
complexity of the test translation process. The underlying
theme for distinguishing test translation related behavior is
the requirement for bulk mode, instead of case-by-case, test
justification and propagation, while utilizing only existing
module functionality. In this sense, channels provide a
pessimistic view of a module’s functional space.

Channels attempt to capture bulk mode, test translation
related behavior of modules, in terms of bijection functions
between input and output signal entities. Channels are
instantiated upon the compliance of a number of conditions
that require a specific potential on signal entities. The
required potential may be either controllability or
observability of the signal entity to a set comprising all
possible values, a known constant value, an unknown but
constant value, mutually exclusive values, or same values on
the bits of the signal entity. Channels incorporate time
considerations and may be defined either between an input
signal entity and an output signal entity or between two
output signal entities, in order to account for state-
dependent, sequential logic behavior. Signal entities may be
defined either on the full word bitwidth or on sub-word
bitwidths. In order to be able to support and combine
variable bitwidth channels on a search path, the notions of
well and drain are employed. Wells are either primary
inputs or internal modules with controllability potential on
signal entities. Similarly, drains are either primary outputs,
or internal modules with observability potential on signal
entities. A succinct definition of the transparency channels
is given in Fig. 3, along with a few examples of simple
modules and associated channels.

In summary, channels capture test translation behavior of
data and control path, combinational and sequential
modules, variable bitwidths and sub-word signal entities.
An extensive description of the channels is given in (10).

8.6.2

160

(B

Condition: <potential> <signal entity> timge

Opevator: (and lor tindependentof)
Weell: (primary inputs Linternal module ontput bits) <controllability potential>
Drain: (primary outputs iinternal module input bits) <observability potential>

Potential: (controtlability lobservability)
(tull lknown constant lunknown constant I mutex | same)

Transparency Channel Definition Examples

Channel: <signalentity> vime <channel funciion> <signal entity> time <conditions> A[3:0] B(3:0] IN[3:0)

l<well> time <channel function> <signal entitv> time <conditions> . CLR

V<signal entity> time <channel function> <drain> lime <conditions> [4-bit Adder 4-bit Left LD
Signul Entity: (module inputhits I module output bits) Rotator ROT

Cout C(3:0

Channel Function: bijection function 13:01 0OUT(3:0)
Conditions: <condition> X ADDER: R

| <conditions <operators <condition> 1) A[3:0] [t] { +k MOD16) C[3:0] {1] IF (known constant ‘k’) B([3:0] [1]

2) A(3) U (Mdentity) Cout [t] IF (same) A[3])B[3] (1]

BROTATOR:
1) IN[3:0]) ft] (Identity) OUT{3:0] [1+1]) IF (known constant ‘00")
(ICLRJ[ROT]){t) AND (known constant ‘1°) (LD) [t]

2) OUTI[3:0] (1] (Rotate Left k bits) OUT[3:0] [t+k] IF
(known constant ‘00°) ({CLR] [LD]) [t. t+1,...,t+k-1] AND
(known constant ‘1") (ROT) [t, t+41, .., 1+k-1]

FIGURE 3: TRANSPARENCY CHANNEL DEFINITION AND EXAMPLES

main {
for each module {
identifv test requirementstrodule _under_test);
foreach test requirement
sausfv_test_requiremeni(iest requirenentj;
report channels of modutes on paths;

ATPG
Constraints

Module
foternal
Blocks'&
) / Connectivity

satisfy_test_requirement (test requirement){
for each signal entity in text requirement(
find relevant module in the design;
repeat until no more available channels for module{
select channel;
check conditions;
if conditions compiy satisfv_test_requirement(new test requirement);

if not completely satisfied store hest-maich channels & tesiability bonlenecks;

/ ®

Local Vector
ViV, VaViV,

R cachability]
Paths

Testability
Boltlenecks

Reachability Path & Testability
Bottleneck Identification

(b)

Primary Inputs

Test
Justification &
Propagation
Requirements

!

’l i X % I i
rime X0 TUIX[X JQvp| | Transtates
D o val o] f i

(©)

FIGURE 4: DESIGN TRAVERSAL FOR REACHABILITY PATH, TEST TRANSLATION TEMPLATE AND BOTTLENECK IDENTIFICATION

B. Design Traversal Algorithm

Starting at the boundaries of the module under test, the
recursive design traversal algorithm described in Fig. 4a
attempts to identify the channels required from the upstream
and downstream modules for test translation. For each
module under test, the local test generation constraints and
the internal module connectivity are examined and a set of
test justification and propagation requirements is defined for
the module. Test requirements are expressed as potential
that needs to be justified or propagated through transparency
channels, to the input or the putput signal entities of the
module under test respectively. The algorithm traverses the
design, backtracking as necessary, in order to satisfy the
requirements using channel behavior. While traversing an
upstream/downstream module, available channels are probed
as to their suitability for providing the required potential on
the desired signal entity. Channels may be combined into
wider channels or broken into smaller ones, provided that
appropriate conditions ensure no loss of potential. Factors
such as reconvergence and feedback loops are considered in
order to prioritize the probing of channels and to accelerate
algorithm convergence. The search is very fast since it
involves only high-level primitives and does not search
exhaustively the design. The algorithm ends when
appropriate wells or drains satisfying the test requirements
are encountered. Channels on the reachability paths to the
wells and drains are reported and combined into test
translation templates for each module. If the requirements
cannot be completely satisfied, the best matching set of
channels is reported for each module, along with a list of
testability bottlenecks, as demonstrated in Fig, 4b.

8.6.

DFT Modifications

The bottlenecks reported by the traversal algorithm are
combined for all modules and a minimal set is obtained.
Resolving these bottlenecks guarantees that reachability paths
exist to each module in the design. The proposed scheme
pinpoints the signals to be enhanced for testability and
provides the required potential on each of them. Any type of
DFT modification, such as scan or test points, can be
subsequently applied. Furthermore, behavioral test synthesis
may also be employed for resolving the identified bottlenecks
and enhancing module reachability, as shown in (11). More
details on DFT modification guidance can be found in (12).

Hierarchical Test Generation

Using the identified reachability paths the locally
generated vectors are translated into global design test, either
on the original or on the modified design. In order to
perform this translation, the channels on the identified vector
justification and response propagation paths are combined
into test translation templates that capture both the
translation paths and the corresponding conditions. In case
vectors need to be justified consecutively and paths of
appropriate time-extended channels exist, the templates are
constructed accordingly. Given each vector, these templates
apply the reverse effect of the channel functions on the
translation path. This process provides a global vector that
when justified through the path will provide the desired local
vector, as shown in Fig. 4c. Using these templates, the
actual local to global test translation can be rapidly
performed. During fault simulation, Xs are randomly filled
in order to cover collateral faults.

3
161

w A1

Controllability Bottlegecks at [tt+1]
<N

N | y AN In [15:8] In [7:0]
TIR ;»| 12-BIT COUNTER . |Logicle Q[0] M [7]
LA Acln [6:0] ™.
A_IN yr T]p,c_oUT l_ITL__ ¢ \‘5, {
v
e Mﬂmn / AL71 Hp{accumutator A[6:0]Muitiplier Q[7:0]|| |[Muttiplicand M[7:0)
Potential ‘1’ \/* OvE _‘—J Q [0]
Controllability* 16 .
Bonteneck NRA ‘ ‘Adxn [6:0] .
» Carry Out | - 3
RsT B72< — {Parallel 7-bit Adder] 3
REG_SLT———I,L» Bus] B'us »
Driver Driver Z [M[6:0]
out [5]
7 lout 115:81 Jout (7:01
(a) (b)
FIGURE 5: EXAMPLE CIRCUITS
Examples & Results TABLE 1

The TRANSPARENT system was applied on the two circuits
depicted in Fig. 5, a simple 3-block circuit with intricate
feedback loop behavior introduced in (7), and an 8-bit binary
shift & add multiplier described in (13). As depicted in Fig.
5, testability analysis revealed a few bottlenecks on each
design, which were subsequently resolved by using simple
test multiplexers. Locally generated test vectors using
HITEC (14) were translated into global test, both on the
original and on the modified design and subsequently fault
simulated using PROOFS (15). The results are summarized
in Table 1 and compared in terms of fault coverage, test
generation time and vector count to a full-circuit ATPG
approach using HITEC. The ability of our system to guide
DFT modifications, improve fault coverage and speed-up
test generation is thus demonstrated.

Conclusions

We introduced TRANSPARENT, an RTL hierarchical test
strategy that addresses size and complexity considerations of
modern designs in a divide & conquer manner. A testability
analysis scheme that identifies module reachability paths
composed of transparency channels and reveals potential
testability bottlenecks in the design was described.
Consequently, a methodology for guiding DFT modifications
and utilizing the obtained reachability paths for translating
locally generated vectors into globally applicable test was
discussed. The proposed scheme constitutes a viable
alternative to full circuit gate-level ATPG and previous
hierarchical test generation approaches, as revealed by the
significant fault coverage improvement and test generation
time reduction, obtained on example hierarchical designs.

References

J. Lee, J. H. Patel, “Hierarchical test generation under architectural
level functional constraints”, JEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 15, no. 9, 1996, pp.
1144-1151.

B. T. Murray, J. P. Hayes, “Hierarchical test generation using pre-
computed tests for modules”, JEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 9, no. 6, 1990, pp.
594-603.

()

FULL CIRCUIT GATE-LEVEL ATPG VS. TRANSPARENT

Circnit () | Gate- ranspare; L ont|
Coverage 1034/1055 1038/1055 1038/1055 1054/105.
T.G. Time 3.483 sec 0.4 sec 2.895 sec 0.3 sec
Vectors 146 124 157
_ Circuit @ ite-Ley nspar Level | Transpare
Coverage 685/716 693/716 712/716 715/716
T.G. Time 0.25 sec 0.1 sec 0.15 sec 0.07 sec
Vectors 249 210 183 141
(3) L Ghosh, A. Raghunathan, N. K. Jha, “Hierarchical test generation

and design for testability of ASPPs and ASIPs”, Proceedings of the
34™ Design Automation Conference, 1997, pp. 534-539.

R. S. Tupuri, J. A. Abraham, “A novel test generation method for
processors using commercial ATPG”, Proceedings of the International
Test Conference, 1997, pp. 743-752.

P. Vishakantaiah, J. A. Abraham, D. G. Saab, “CHEETA:
composition of hierarchical sequential tests using ATKET”,
Proceedings of the International Test Conference, 1993, pp. 606-615.
B. T. Murray, J. P. Hayes, “Test propagation through modules and
circuits”, Proceedings of the International Test Conference, 1991, pp.
748-757.

P. Vishakantaiah, J. A. Abraham and M. S. Abadir, “Automatic test
knowledge extraction from VHDL (ATKET)”, Proceedings of the 29™
ACM/IEEE Design Automation Conference, 1992, pp. 273-278.

M. S. Abadir, M. A. Breuer, “A knowledge-based system for
designing testable VLSI chips”, IEEE Design and Test of Computers,
vol. 2, no. 4, 1985, pp. 56-68.

S. Freeman, “Test generation for data-path logic: the F-path method”,
IEEE Journal of Solid State Circuits, vol. 23, no. 2, 1988, pp. 421-427.
Y. Makris, A. Orailoglu, “RTL test justification and propagation
analysis for modular designs”, Journal of Electronic Testing: Theory
& Applications, Kluwer Academic Publishers, vol. 13, no. 2, 1998, pp.
105-120.

Y. Makris, A. Orailoglu, “Channel-based behavioral test synthesis for
improved module reachability”, Proceedings of the Design
Automation and Test in Europe Conference, 1999 (in press).

Y. Makris, A. Orailoglu, “DFT guidance through RTL test
justification and propagation analysis”, Proceedings of the
International Test Conference, 1998, pp. 668-677.

J.P. Hayes, Computer Architecture and Organization, McGraw-Hill,
3rd Edition, 1998.

T. Niermann, J. H. Patel, “HITEC: a test generation package for
sequential circuits”, Proceedings of the European Conference on
Design Automation, 1992, pp. 214-218.

T. Niermann, W. T. Cheng, J. H. Patel, “PROOFS: a fast, memory
efficient sequential circuit fault simulator”, Proceedings of the 27*
ACMY/IEEE Design Automation Conference, 1990, pp. 535-540.

)

5

©)

M

®)

©)]

10y

an

(12)

13)

14

as

8.6.4

162

