
Toward Accurate Timing Analysis for
Transistor-Level Programmable Fabrics
 Qiongdan Huang, Jingxiang Tian, Thomas Broadfoot, Xiangyu Xu, Bo Hu,

 Mustafa Shihab, Apurva Jane, Vibhav Salimath, Yiorgos Makris and Carl Sechen
Electrical and Computer Engineering Department, The University of Texas at Dallas, Richardson, TX 75080, USA

E-mail: {qxh150430, jxt122130, tjb043000, xxx110230, bo.hu,

mms091120, axj173930, vks160030, gxm112130, and cms057000}@utdallas.edu

Abstract—Transistor-level programmable fabrics [3] [4] have
received interest recently as more compact embedded field-
programmable gate arrays (eFPGAs) for hardware obfuscation,
in which a crucial part of the design is implemented in the
eFPGA and the rest of the design is implemented as an ASIC.
However, conventional static timing analysis (STA) tools were
developed either for ASICs or look-up table (LUT)-based FPGAs.
Transistor-level programmable fabrics have pass transistors,
keepers, and repeaters in the interconnect. Conventional STA
tools require the interconnect parasitics to be expressed in
SPEF (Standard Parasitic Exchange Format), consisting only
of wiring parasitics. Furthermore, logic gates for transistor-
level programmable fabrics may have a separate input to the
pMOS pull-up network and the nMOS pull-down network. Dual
inputs in this manner cannot be handled accurately enough
since conventional methods have to take the longest delay among
the inputs, which often overestimates the downstream delay.
We propose an instance-based characterization solution which
enables the use of an STA tool (PrimeTime from Synopsys) for
static timing analysis of transistor-level programmable fabrics.
We individually characterize each cell (logic gate) instance in
the transistor-level programmable fabric, from predecessor cell-
instance output to characterized cell-instance output, including
all parasitics, pass transistors, repeaters and keepers. Exper-
imental results corroborate that the proposed instance-based
characterization method yields very accurate STA for transistor-
level programmable fabrics.

Index Terms—STA, eFPGA, TRAP

I. INTRODUCTION

Reconfigurable computing has contributed to the eminent

progression in a wide scope of utilizations – from high

performance computing to secure systems. Despite the fact that

LUT-based FPGAs have been the most popular reconfigurable

computing platform, there are a few other alternative recon-

figurable platforms based on fine-granularity programmabil-

ity [1], [2]. Specifically, the TRAnsistor-level Programmable

fabric (TRAP) [3], has received interest recently as it il-

lustrates uniquely compelling features, such as: (1) A more

compact embedded field-programmable gate array (eFPGA)

for hardware obfuscation [4], in which a small but crucial

part of the design is implemented on an on-chip eFPGA and

the rest is implemented by a conventional application-specific

integrated circuit (ASIC); (2) A better logic density and lower

area overhead compared to conventional eFPGAs for the same

technology. However, accurate timing analysis of transistor-

level programmable fabrics has been a challenge.

Timing verification has always played an important role in

digital circuit verification [5]–[7]. Among the various methods

proposed in the literature for examining the timing of digital

circuits, one of the most widely used timing verification

methods, is staitic timing analysis (STA). Conventional STA

tools are predominantly designed for ASICs. Furthermore,

STA tools for FPGAs are proprietary, vendor-specific, and

tailored to certain architectures.

The unique architecture of TRAP having pass transistors,

half-keepers, and bi-directional repeaters in the interconnect

network between logic gates [3] makes it difficult to apply

conventional STA on it. Such pass transistors, half-keepers

and bi-directional repeaters, when embedded in the parasitics,

cannot be handled by existing STA approaches. Moreover, ed-

ucated attempts at replacing them with an equivalent resistance

results in gross delay estimation error. In addition, certain

inputs of some of the logic gates in TRAP are dual inputs

(i.e., separate connections to the pMOS and nMOS networks),

implying that a driver must fan out and be connected to both of

these inputs. Taking only the worst-case of the two delays to

each of these dual inputs (as STA does) and applying it to both

of them overestimates the delay. On top of that, an attempt to

apply a transistor-level timing analysis tool (e.g., Synopsys’

NanoTime), was not successful. NanoTime, which utilizes a

topological algorithm to identify standard cells, fails to identify

cells in TRAP since the pull-up and pull-down networks in

TRAP are not simple duals of one another, although they

are obviously logic duals of one another. Also, NanoTime

documentation states that it doesn’t handle circuits well “that

use the source or drain terminals of pass transistors as inputs”

[8] as it ignores parasitics on the side path [6]. Parasitics

on the side path shown on Fig. 2 also contribute to delay.

Additionally, TRAP is designed to seamlessly integrate with

ASICs. This means that we need to use the same STA tool

for both TRAP and the much larger ASIC. Consequently, we

can infer that there exists no straightforward mechanism to

applying existing STA tools to perform STA on TRAP.

To address these limitations, herein we propose a novel

instance-based characterization (IBC) approach which char-

acterizes cell instances from predecessor cell instance output

to characterized cell-instance output, rather than from charac-

terized cell input to output (for various loads), as done con-

ventionally. Upon completion of cell instance characterization,

a conventional STA tool (e.g., PrimeTime) can be used since

the parasitics, pass transistors, half-keepers, etc., have already

been included in the instance characterization step.

II. TRANSISTOR-LEVEL PROGRAMMABLE FABRICS

TRAP is a CMOS computational fabric consisting of care-

fully arranged regular rows and columns of transistors which

978-1-6654-9885-2/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 1
5t

h
D

al
la

s C
irc

ui
t A

nd
 S

ys
te

m
 C

on
fe

re
nc

e
(D

C
A

S)
 |

97
8-

1-
66

54
-9

88
5-

2/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

C
A

S5
39

74
.2

02
2.

98
45

53
0

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:04:29 UTC from IEEE Xplore. Restrictions apply.

can be individually configured and appropriately intercon-

nected in order to achieve post-fabrication implementation of

target digital circuit [3], [4]. Fig. 1. depicts its structure. The

transistor array and the interconnect are the most fundamental

elements. Each row in TRAP comprises columns of transistors,

and in particular, each column contains 3 pMOS and 5 nMOS

transistors. In Fig. 1, the 3 pMOS devices in the first column

happen to be colored blue, with two of them (P3, P1) being

vertically oriented (from source to drain) and the topmost of

which is connected to the power supply. The other pMOS

device (P2) is horizontally oriented in the figure, and connects

the center of the two vertically oriented pMOS transistors

in this column to a symmetrical point in the next column.

There are also two vertically oriented (drain to source) nMOS

devices (N1, N3) in which the bottom-most one is connected

to ground. Likewise a third nMOS (N2) that is horizontally

oriented is attached between that pair of nMOS devices

and a symmetrical pair in the next column. Two additional

nMOS devices are connected at the center of the column,

one (horizontally oriented NH) connecting to the center of the

adjacent column, and one (vertically oriented NV) optionally

providing a cell output at that column.

Except for the last two nMOS devices, which can only be

programmed ’on’ or ’off’, each of the other 6 transistors in a

column can receive a logic signal, or can be programmed to

be ’on’, or ’off’. In this manner, so-called standard cells of

various widths and the same height (one row height) can be

programmed. Note that the interface controls those transistors

to either receive a logical signal, or be programmed. In Fig.

1., the implementation of a NAND3 gate is illustrated via the

blue transistors with inputs A, B, and C, which either receive

an input or are programmed to be always ’on’. Meanwhile, the

black transistors are programmed ’off’. It is apparent that three

columns are needed to implement a NAND3 gate in TRAP.

Although D flip-flops (DFFs) can be implemented in the array,

custom DFFs are also optionally available every three columns

and, if used in a particular column, preclude the use of that

column for logic cells.

An abstract of the interconnect array in TRAP is shown

in Fig. 1. It consists of segments of vertical and horizontal

metal layers overlaying the logic transistor array. nMOS tran-

sistor switches optionally interconnect two wire segments on

different metal layers. Every 3 columns the horizontal metal

tracks are segmented via pass transistors, and every 9 columns

the pass transistors are replaced with bi-directional repeaters.

Repeaters in TRAP are used to boost signals in order to present

voltage drop after passing various pass transistors. Between

each row (vertically) a bi-directional repeater connects a

vertical metal segment in one row with the corresponding

metal segment in the adjoining row.

III. ATTEMPTING CELL-BASED CHARACTERIZATION

We first considered an obvious potential solution to STA

for TRAP, which is to attempt a cell-based characterization

approach in which the pass transistors in the interconnect

are replaced with an equivalent resistance of some sort. Fig.

Fig. 1: Hierarchical organization of the TRAP fabric.

2 illustrates a NAND2 gate driving another NAND2 gate

(whose inputs are each split into two, one going to the pMOS

pull-up network and the other going to the nMOS network.

The extracted parasitics between the two gates, for horizontal

and vertical metal layers, are shown. In addition, turned-on

pass transistors, with small red Vdd symbols on their gates,

are shown, as are six turned-off pass transistors (which only

contribute parasitic capacitance).

In this example the load NAND2 gate has separate connec-

tion paths to the nMOS and pMOS transistor networks for each

of its inputs. We chose only the longer path among these two

paths and applied that delay to both the nMOS and the pMOS

parts of the load NAND2 gate inputs. We then performed

parasitic extraction and obtained the SPICE circuit model

of that signal path. Next, we replaced each pass transistor

with a resistor R, the value of which was varied until the

delay from the driver NAND2 gate input to the load NAND2

gate input matched the delay of the original extracted path,

which included the actual pass transistors. We also simulated

a variety of other such extracted parasitic paths with pass

transistors and observed that, over all such cases, a value of R

roughly in the neighborhood of 1000 Ω was the best choice.

Therefore, for all circuits, we replaced the pass transistors with

a resistor of magnitude 1000 Ω. Fig. 2 shows the parasitic

network including pass transistors, while Fig. 3 shows the

parasitic network after the turned-on pass transistors have been

replaced by resistors. Note that the parasitics orthogonal to the

obvious signal direction are due to connected wire segments

(metal lines) which are not connected to any other instances,

but which nonetheless must be charged/discharged.

After replacing the pass transistors with resistors, we gen-

erated the SPEF for each net in the netlist. In all cases,

when a driving gate or repeater drives the nMOS and pMOS

networks of a load gate input through divergent paths, we

chose the longer of the two paths and discard the other when

generating the SPEF. For TRAP it is necessary to also include

the parasitics of all pass transistors which are programmed off

when generating the SPEF.

After using the above process for extracting the SPEF,

we characterized all gates that can be implemented on the

transistor-level programmable fabric using commercial library

characterization CAD tools (e.g., Synopsys’ Silicon Smart).

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:04:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Parasitic network for NAND2 driving a NAND2.

Fig. 3: Parasitic with ‘on’ pass transistors replaced by resistors.

This, in turn, enables the use of conventional STA tools (e.g.,

PrimeTime) to obtain the worst case delay of a circuit imple-

mented using these gates. The entire procedure is summarized

in Algorithm 1. Results evaluating its effectiveness will be

provided in Section V, revealing that despite enabling the use

of conventional STA, library-based characterization does not

nearly reach the required levels of STA accuracy.

IV. INSTANCE-BASED CELL CHARACTERIZATION

In an effort to obtain much more accurate STA results

than what cell-based characterization offers, we propose an

instance-based characterization solution. In this approach, each

instance of a library cell used in a design is characterized

individually, along with all its extracted parasitics. The charac-

terization includes any repeaters and pass transistors associated

with the fanout wiring of each cell instance. Thereby, once

characterization is completed, conventional STA (e.g., using

PrimeTime) can be run accurately without using any SPEF,

since literally all of the parasitics have already been accounted

for in the characterization step.

A key novel attribute of our instance-based cell characteri-

zation is that it takes place from the output of the predecessor

gate to the output of the instance being characterized. The

advantage of this approach is that it can handle seamlessly

the previously discussed issue occurring when a gate input has

separate paths connecting to the nMOS and pMOS networks.

Indeed, in our scheme these dual-paths are part of the instance

Fig. 4: Characterization circuit (purple box) for NAND2

instance (in blue) with multiple fanouts.

being characterized by SiliconSmart and, therefore, do not

need to be dealt with by PrimeTime.

An important issue with this new characterization approach,

which proceeds from predecessor output to characterized

instance output, is the load faced by the instance being

characterized. If no explicit load is made present, as would

be done for library-based characterization, then SiliconSmart

would have to be run for a range of load capacitances, and in

most cases would not be accurate due to the resistive nature

of the actual load. We therefore attach the actual R and C

network load that the characterized instance drives, up to

(and including the input capacitances) of the fanout instances

being driven by the instance being characterized. In this way,

SiliconSmart is presented with the actual load the instance

being characterized sees. Off-path parasitics (e.g., Fig. 2) for

the driver of the instance being characterized are included in

the characterization of an instance. As an example of this

approach, Fig. 4 shows the basic circuitry (inside the purple

box), minus the R and C parasitics of the interconnect, used to

characterize the NAND2 gate (in blue) toward the top center

of the purple box.

The instance-based characterization approach is summarized

in Algorithm 2 and detailed in the following subsections.

A. SPICE netlist and parasitic extraction for one block

TRAP features arrays of largely identical blocks. Therefore,

it is sufficient to carry out a detailed SPICE netlist and parasitic

extraction for one such block and use that extracted block as

the reference when searching for the SPICE netlist and the

parasitics for circuitry in any other block. For the purpose

of timing analysis, only the SPICE netlist and the parasitics

associated with the interconnect and devices that impact signal

delay are retained. The SPICE netlist and PEX/PXI (Parasitic

EXtraction and Parasitic eXtraction Interconnect) files are

generated from the layout through an extraction program (i.e.,

Mentor’s Calibre). Here, in Line 1 of Algorithm 2, we only

generate the SPICE netlist and the PEX/PXI files for one block

of TRAP, and then use it for all other blocks. Parasitics are

extracted from the PEX and PXI files.

B. Programming bits used to configure the SPICE netlist

The same programming bits that are used to configure the

transistor-level programmable fabric are used to configure the

SPICE netlist. Each programming bit has a direct link to a pro-

grammable transistor. Lines running from an SRAM memory

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:04:29 UTC from IEEE Xplore. Restrictions apply.

cell to a particular transistor are traced to that programmable

transistor and the gate of that transistor is assigned VDD or

GND in accordance with the associated programming bit value

stored in that memory cell.

For each block in the transistor-level programmable fabric,

we first insert the SPICE netlist obtained at Line 1 of Algo-

rithm 2. Then we apply the programming bits for that block to

configure the corresponding SPICE netlist. This step comprises

Lines 2-5 in Algorithm 2.

C. PEX and PXI file creation

To enable characterization of the instances in a design, we

need the configured SPICE netlist obtained from Lines 2-5 of

Algorithm 2 along with the PEX and PXI files for the entire

design. To create these files, we use as our source the PEX and

PXI files for one block of the transistor-level programmable

fabric, which were obtained as shown in Line 1 of Algorithm

2. Since each block in the fabric has identical parasitics, for

each block and for each net in that block in turn, we cross-

reference that net to the PEX and PXI files of the source block.

Then, PEX and PXI entries are added for this net. Thereby,

after all blocks have been so examined, PEX and PXI files for

the entire design are created (Lines 6-11 of Algorithm 2).

D. Graph of active elements associated with an instance

The programmable interconnect consists of arrays of

switches (pass transistors) and repeaters. The turned-on

switches and bi-directional repeaters are separately termed as

active elements while the turned-off switches and repeaters are

termed non-active elements. Only the active elements indicate

how signals travel in the design. If we find a bi-directional

repeater is associated with a certain instance, we look-up the

transistor configuration for the repeater in the SPICE netlist

obtained at Line 1 of Algorithm 2.

Fig. 5 shows an example of a 3-gate circuit implemented on

a transistor-level programmable fabric. Fig. 6 is the dual graph

of Fig. 5, which is used to facilitate the search for the active

elements associated with each instance (Line 12 of Algorithm

2). The example in Fig. 5 has one NAND2 instance, one NOR2

instance, one OAI21 instance, and 11 nets. Vertices represent

nets and edges represent active elements (i.e., ‘on’ switches,

repeaters and gate instances). Between the ‘NET2’ vertex and

the ‘NET3’ vertex, transistor MMN1 is the edge connecting

them. Repeater X0, as well as instances such as X1, X2, and

X3 are also represented by edges.

E. Determining the SPICE netlist of each instance

As described earlier through the example of Fig. 4, an

instance to be characterized starts from the output of its

predecessor, goes through certain pass transistors and gates

(e.g., repeaters), and ends with its fanout loads as its output.

Fig. 7 shows an example of the process of determining the

SPICE netlist for the NAND2 gate instance X1. The example

in Fig. 7 is derived from the example shown in Fig. 5.

The dual graph from Fig. 6 is used to trace the components

associated with this instance. Starting and ending points, which

are obtained by finding the inputs and output of the instance

in the structural Verilog netlist, are provided to the graph.

Depth-first search (DFS) is used, starting from IN1 (NET1)

and proceeding to OUT1 (NET5). The search reveals the pass

transistors and gates (e.g., repeaters) between these two points.

The first search area is marked as the purple box in Fig. 7. The

second step of the search will then start from the output of the

target instance and end at the loads of the target instance. The

load gates driven by a particular instance are readily available

in the structural Verilog netlist. In this case, the search starts at

OUT1 (NET5) and ends at NET6, NET7, NET8, and NET9.

The second step of the search takes place inside the illustrated

green box in Fig. 7. Together, these two search steps, which

are described in Lines 13-20 of Algorithm 2, produce a list

of active elements relevant to the characterization of the target

instance. When extracting instance X1 of Fig. 7, the ‘off’ pass

transistors attached to NET3, NET4, NET6, NET7, NET8,

and NET9 also need to be extracted from the SPICE netlist

generated through the steps described in Section IV-B.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:04:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: TRAP circuit example.

Fig. 6: Dual graph corresponding to Fig. 5

Fig. 7: Example netlist for characterizing instance X1.

F. PEX/PXI file creation for each instance

After a SPICE netlist is obtained for characterization of an

instance, the nets are cross-referenced in the PEX and PXI

files generated by Lines 6-10 of Algorithm 2 to provide the

parasitics for this instance. Instance-specific PEX and PXI files

are created in this process (Lines 21-24 of Algorithm 2).

G. Instance characterization and Liberty file creation

The SPICE netlist associated with each instance, along with

the corresponding PEX and PXI files, enables SiliconSmart to

characterize each instance and generate the Liberty file (.lib)

for each instance. During the characterization for each in-

stance, we applied the Pole Analysis via Congruence Transfor-

mations (PACT) algorithm to perform Model Order Reduction

(MOR) on each instance’s parasitics network [9]. This is also

known as the SimLA option in Hspice. The PACT algorithm

reduces the RC networks in a well-conditioned manner, while

preserving network stability. With the MOR approach, each

instance can be characterized in about 2 minutes, on average.

We note that this is quite similar to the average characterization

time for a standard cell in an ASIC library for one corner. We

create a separate characterization directory for each instance

to facilitate parallel characterization runs, if desired. After

characterization is complete, a single Liberty file is created

for the design. This process is described in Lines 25-26 of

Algorithm 2.

H. Static timing analysis

The last step of our instance-based cell characterization

approach, which is shown in Line 27 of Algorithm 2, is

to invoke PrimeTime. This step uses the structural Verilog

netlist and the Liberty file (.lib). We note that PrimeTime no

longer needs to use SPEF, since all interconnect parasitics have

already been included during instance characterization.

V. EXPERIMENTAL RESULTS

In this section we show results for the set of combinational

benchmark circuits shown in Table I for TRAP [3], [4]

designed and fabricated using two different technologies, GF

65nm and GF 12nm, respectively. The benchmarks include 6

from the ISCAS-85 set (C432, C880, C1908, C1355, C3540,

C6288), a 4-bit fast adder (74283), and a 13X13 multiplier.

Benchmark 74283, C432, C880 and 13X13 multiplier are

implemented through TRAP in GF 65nm. Benchmark C1908,

C1355, C3540, C6288 are implemented through TRAP in

GF 12nm. As mentioned earlier, for the intended hardware

obfuscation application of the transistor-level programmable

fabric, circuit sizes of at most a few thousand instances are

anticipated. Note that even for these benchmarks, the number

of extracted resistors and capacitors extends well into the

millions and Hspice simulation time for one vector can last

for hours.

In Table III, we first compare the conventional Library-

based Characterization (LBC) STA method (Algorithm 1) with

the proposed Instance-based Characterization (IBC) method

(Algorithm 2). Hspice is the industry’s gold standard for

accurate circuit simulation and the first column shows the

Hspice simulated result for the critical path identified by

PrimeTime for the instance-based characterization method.

We then provide the critical path delay information obtained

by the IBC method, as well as the percentile difference

from the Hspice results. Lastly, we also provide the same

information, as obtained by the LBC method. The IBC method

critical path delay results are accurate, as they are within 4%

of the Hspice circuit simulation results for 65nm and within

3% for 12nm.

In contrast, the LBC method accuracy is completely un-

acceptable, with its percentile difference from the Hspice

results exceeding 50%. Although replacing the turned ON

pass transistors by a suitable resistor value can work to some

extent for circuit simulation, quite apparently having such large

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:04:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Transistor-level Programmable Fabric Benchmarks.

 74283 C432 C880 Multiplier 13x13 C1908 C1355 C3540 C6288

Primary Input Count 9 36 60 26 33 41 50 32

Instance Count 41 212 383 537 162 168 424 1405

Transistor Count 24,584 121,877 187,965 254,468 38,302 38,205 112,983 309,367

Resistor Count 608,016 3,073,909 4,980,687 6,023,876 1,230,174 1,225,462 3,614,381 9,716,311

Capacitor Count 321,196 1,664,333 2,443,169 3,246,169 411,461 409,505 1,209,813 3,280,336

Hspice Run Time (One Vector) 14.9 m 1.5 h 2.0 h 2.7 h 24.6 m 24.0 m 1.5 h 3.2 h

TABLE II: Run time for IBC/LBC + STA fabric.

 74283 C432 C880 Multiplier 13x13 C1908 C1355 C3540 C6288

IBC + STA using 10 threads

Algorithm 2 (Lines 1–24) 0.82 min 1.9 min 3.3 min 4.0 min 0.8 min 0.7 min 1.7 min 4.6 min

SiliconSmart Characterization 9.8 min 0.8 h 1.4 h 1.8 h 16.9 min 16.7 min 0.8 h 2.2 h

Total Time (Including PrimeTime) 10.6 min 0.8 h 1.4 h 1.8 h 17.7 min 17.4 min 0.8 h 2.2 h

TABLE III: Critical path delay comparison.

 Hspice (ns) IBC (ns) ∆ LBC (ns) ∆

74283 16.0 16.67 4% 6.62 58%

C432 97.1 99.81 2.7% 43.23 55%

C880 87.6 83.4 2% 41.2 53%

Mult. 13x13 98.67 94.46 4.2% 44.23 55%
C1908 12.84 12.59 2.0% 5.78 55%

C1355 13.48 13.26 1.6% 6.34 53%

C3540 18.87 18.40 2.5% 8.30 56%

C6288 44.23 42.91 2.9% 19.46 56%

resistors intermingled with the extracted R’s and C’s in the

SPEF causes significant problems for PrimeTime when it tries

to compute the SPEF delay. Hence the LBC method must be

ruled out as a viable option for static timing analysis of a

transistor-level programmable fabric having pass transistors in

the programmable interconnect network.

Table II show the total run time for processing the 8

benchmark circuits, including the total run time spent on the

main parts of Algorithm 2 and cell instance characterization.

Characterization of the instances (Line 26 in Algorithm 2), was

done with k parallel processors (threads) as described earlier.

We show results when IBC was performed using k=10 threads

(i.e., the number of available SiliconSmart licenses available to

us). The Hspice characterization time for one instance averages

about two minutes using the PACT algorithm (SimLA option)

mentioned earlier.

For the transistor-level programmable fabric, there are 21

logic cells available. The unique aspect of the fabric is that

each input of each logic cell has an optional inversion that

can be activated/deactivated via programming. To characterize

all possible configurations of each cell in the standard library-

based manner, the characterization run time is 1.5 hours (for

one corner on ten threads). Obviously this characterization

would only have to be done once for a given technology up-

date. However, library-based characterization is nowhere close

to accurate for this transistor-level programmable fabric. But

this does at least show that instance-based characterization is

feasible, with the run time comparable to the characterization

time of the complete library of logic cells.

VI. CONCLUSION

Transistor-level programmable fabrics such as TRAP have

received interest recently as more compact eFPGAs for hard-

ware obfuscation. However, until now accurate STA for TRAP

has been a challenge. We developed an instance-based char-

acterization solution which enables the use of PrimeTime for

static timing analysis for TRAP. TRAP has one or more pass

transistors in the interconnect for each net. Furthermore, logic

gates (or cells) may have a separate input to the pMOS pull-up

network and the nMOS pull-down network. To address these

limitations, we individually characterize each cell instance in

TRAP, from predecessor cell-instance output to characterized

cell-instance output, including all parasitics, pass transistors,

half-keepers, etc. Experimental results show that the proposed

instance-based characterization method yields very accurate

STA for TRAP. Having the ability to accurately generate

liberty file (.lib) entries for each cell instance in the eFPGA

enables accurate STA for a mixed ASIC/eFPGA since the

ASIC portion is characterized in the usual cell-based manner.

Furthermore, since cell instances can be readily characterized

in parallel using multi-core, multi-threaded processors, the

computation time is readily feasible for the circuit sizes

contemplated for TRAP in the intended application of hard-

ware obfuscation. Our approach could be extended to enable

accurate STA for any type of cell-based netlist in which the

wiring parasitics either cannot be expressed in SPEF or cannot

be accurately expressed in SPEF.

REFERENCES

[1] F. Yuan, C. C. Wang, T. Yu, and D. Marković, “A multi-granularity
FPGA with hierarchical interconnects for efficient and flexible mobile
computing,” IEEE JSSC, vol. 50, no. 1, pp. 137–149, 2015.

[2] J. Langeheine, J. Becker, S. Folling, K. Meier, and J. Schemmel, “A cmos
fpta chip for intrinsic hardware evolution of analog electronic circuits,”
in Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-
2001, 2001, pp. 172–175.

[3] J. Tian et al., “A field programmable transistor array featuring single-cycle
partial/full dynamic reconfiguration,” in IEEE/ACM DATE, 2017.

[4] M. Shihab et al., “Design obfuscation through selective post-fabrication
transistor-level programming,” in IEEE/ACM DATE, 2019.

[5] R. B. Hitchcock, “Timing verification and the timing analysis program,”
in IEEE/ACM DAC, 1982.

[6] J. Ousterhout, “A switch-level timing verifier for digital mos vlsi,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 4, no. 3, pp. 336–349, 1985.

[7] A. Devgan and C. Kashyap, “Block-based static timing analysis with
uncertainty,” in IEEE/ACM ICCAD, 2003.

[8] S. Inc, “Nanotime user guide,” p. 33, 2016.
[9] K. Kerns and A. Yang, “Stable and efficient reduction of large, mul-

tiport rc networks by pole analysis via congruence transformations,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 16, no. 7, pp. 734–744, 1997.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on October 09,2022 at 04:04:29 UTC from IEEE Xplore. Restrictions apply.

