
Hardware-based Workload Forensics:

Process Reconstruction via TLB Monitoring

Liwei Zhou and Yiorgos Makris
Electrical Engineering Department, The University of Texas at Dallas

Richardson, TX 75080, USA

Abstract—We introduce a hardware-based methodology for
performing workload execution forensics in microprocessors.
More specifically, we discuss the on-chip instrumentation re-
quired for capturing the operational profile of the Translation
Lookaside Buffer (TLB), as well as an off-line machine learning
approach which uses this information to identify the executed
processes and reconstruct the workload. Unlike workload foren-
sics methods implemented at the operating system (OS) and/or
hypervisor level, whose data logging and monitoring mechanisms
may be compromised through software attacks, this approach
is implemented directly in hardware and is, therefore, immune
to such attacks. The proposed method is demonstrated on
an experimentation platform which consists of a 32-bit x86
architecture running Linux operating system, implemented in the
Simics simulation environment. Experimental results using the
Mibench workload benchmark suite reveal an overall workload
identification accuracy of 96.97% at an estimated logging rate of
only 5.17 KB/sec.

I. INTRODUCTION

As reliance of our everyday lives on technology continues

to increase, so does the amount of sensitive information that

is stored, processed and communicated in electronic form.

Inevitably, this also attracts intensified efforts to gain unau-

thorized access to such information for monetary, political, or

other benefit. As a result, when such malicious acts occur, the

ability to retroactively investigate and identify the events that

led to the compromising of sensitive data becomes invaluable.

Workload forensics generally describes the process of col-

lecting and analyzing data related to past execution of com-

puter programs, in order to understand and/or reconstruct the

events that transpired. Such forensic analysis methods are

broadly categorized into data-centric and program-centric. The

former typically employ state snapshots to track changes that

occur to objects of interest, such as files, in order to enable

data recovery and intrusion detection [1], [2], [3], [4], [5], [6].

The latter rely on extracted signatures or behavioral models

to distinguish between programs, in order to enable malware

detection or workload reconstruction [7], [8].

Numerous methods from both categories have been de-

veloped at the operating system (OS) level, leveraging its

rich semantic information and flexibility [9], [10], [11]. OS-

level methods, however, can be subject to software attacks

staged at the same level. Kernel rootkits, for example, may

be used to compromise an OS-level logging system and elim-

inate all traces associated with malicious actions. In order to

overcome this limitation, hypervisor-level forensics solutions

have been proposed. A hypervisor, a.k.a. virtual machine

monitor (VMM), is a software which provides virtualization,

thereby allowing multiple operating systems (guests) to run

concurrently on a single physical machine, without intruding

each other’s context. A management core, designed to be

isolated from the guest-OSs whose execution is facilitated by

the hypervisor, may naturally provide ground for more secure

forensics solutions. Therefore, data collected by a forensics

method at the hypervisor level is generally immune to OS-

level software attacks. Nevertheless, as shown through recent

work [12], the hypervisor itself can be the target, as several

vulnerabilities and intrusion methods have been identified. As

a result, similar attacks compromising integrity of the logged

forensics data to conceal malicious events can be staged at the

hypervisor level.

In contrast, in this work we explore the possibility of relying

exclusively on data collected directly through the hardware,

without the intervention of a hypervisor or an OS whereby

the logged information may be compromised. In essence, we

seek to leverage the fact that – to our knowledge – it is not

possible to hide from the hardware the actions of any executed

software, even software that seeks to hide itself. Accordingly,

traces obtained from hardware are expected to be immune

to software-based tampering. At the same time, however, a

hardware-based forensics solution requires circuitry addition

and modification for identifying, extracting, and logging the

relevant information. Therefore, judicious selection of minimal

information sufficient for fulfilling the targeted task becomes

critical. Herein, we investigate the feasibility and effectiveness

of a hardware-based system which seeks to reconstruct exe-

cuted workload at the granularity of a single process, through

minimal information obtained from the Translation Lookaside

Buffer (TLB). This idea is demonstrated through execution of

the Mibench benchmark suite on an x86 architecture running

Linux OS, implemented in the Simics simulation environment.

The remainder of the paper is structured as follows. In

Section II, we discuss related work. The proposed method is

introduced in Section III, while details of the implementation

are provided in Section IV. Experimental results evaluating the

accuracy of the proposed method in reconstructing workload,

as well as its overhead are presented in Section V and

conclusions are drawn in Section VI.

II. RELATED WORK

The state-of-the-art in forensic analysis methods found in

the literature can be broadly categorized, based on the level at

which they are implemented, into OS-level approaches and

hypervisor-level approaches. Within each category, existing

methods can be further divided into data-centric and program-

centric, depending on the core object of the forensic analysis.

Table I provides a taxonomy of all related methods described

in this Section, including the method proposed in this paper.

167978-1-4673-8826-9/16/$31.00 c©2016 IEEE

A. OS level approaches

OS-level approaches generally benefit from semantic-rich

information, such as process ID, system call sequence, etc.,

which is available at this level. Data-centric approaches in

this category mainly focus on the integrity of file system

objects, such as files on disks. Various commercial products

fall into this paradigm. For example, EnCase [1] creates

images for disk data to enable data recovery and/or to ensure

data integrity. Similar products include FTK [2] and Registry

Recon [3]. Program-centric approaches, on the other hand,

seek to model program behavior based on a number of

different features. For example, the system call number and

its corresponding argument have been widely used as such

features. In order to allow enough flexibility to account for

program execution variation and, at the same time, be able to

distinguish benign from malicious program behavior, machine

learning and/or statistical analysis is typically employed.
A large body of work on intrusion detection follows this

paradigm [9], [10], [11]. In general, these methods rely solely

on analysis of system call sequences. An interesting extension

is introduced in [13], which focuses on a subset of system calls

that are deemed to be most informative. Clustering of system

call arguments is also employed in order to better understand

how it has been invoked by the operating system. In another

incarnation, called Accessminer [14], further information such

as timestamps, return values, etc., is used to model how benign

programs access OS resources (e.g. files and registry entries),

so that malware-induced suspicious behavior can be better

distinguished from normal functionality.

B. Hypervisor-level approaches

Hypervisor-level approaches benefit from the inherently

higher security offered by the virtualization and the isolation

that the hypervisor provides, as we discussed in Section I. As

a trade-off, however, approaches at this level now suffer from

the semantic gap problem. Specifically, while methodologies

similar to those introduced at the OS-level can be applied at

the hypervisor-level, we first need to interpret the information

collected at the hypervisor level and bridge the semantic gap

by linking this information to tangible OS-level objects. To

achieve this, architecture-specific hardware conventions are

typically relied upon. For instance, Antfarm [15] uses the CR3

register available in the x86 architecture in order to identify

process creation, switching and termination. By convention,

the CR3 register stores the base address of the page table

directory of the currently active process. This binding provides

a view of all process handling events. Most hypervisor-level

approaches rely on the CR3 value in order to understand the

life-cycle of a fundamental OS-level object, namely a process.
Once the semantic gap is bridged, program-centric meth-

ods similar to the ones developed at the OS-level may be

applied. For example, the system call number/sequence can

be extracted from the instruction flow and specific registers

(rather than from a software tracing tool, such as strace),

in order to perform behavior-based modeling and analysis

[7], [8]. Data-centric methods may also be devised. Methods

Data-centric Program-centric

OS-level [1],[2],[3] [9],[10],[11],[13],[14],[16]

Hypervisor-level [4],[5],[6] [7],[8],[15]

Hardware-level N/A [17], this work

TABLE I: Taxonomy of related work and proposed method

along this direction monitor the critical area in kernel memory

(e.g. system call table, kernel text, etc.) in order to prevent

malicious changes therein [4]. Such methods even go to a

lower layer, to check whether contents on the disk and its

image in main memory match [5], [6]. Nevertheless, they still

rely on OS-level information (e.g. system.map) to locate

which part is critical to keep their eyes on [6].
Besides using system call related information to model

program behavior, the idea of phase-based behavior modeling

has also been investigated. The underlying conjecture is that

program execution exhibits repeating patterns (phases), which

can be used to model and predict its behavior [16]. A recent

approach also investigates the use of performance counters to

model program behavior for malware detection purposes [17].

III. PROPOSED METHOD

The primary objective of the method proposed herein is

to develop a system-level workload reconstruction capability,

which can be used for the purpose of forensics. In contrast

to OS-level and hypervisor-level approaches, however, this

method should be immune to tampering by software. To

this end, we introduce a hardware-based solution, wherein

the information required for reconstructing the workload is

obtained and stored directly in the hardware. In this way,

there exists no physical pathway for the OS, hypervisor, or

any application running on the system to interfere with the

logged data. To extract the logged data from the processor,

our approach also relies on a dedicated port, which is invisible

to and inaccessible by the OS. Using this port, the data can

be continuously off-loaded to a secure storage or directly fed

into a trusted environment where the forensics analysis will be

performed using statistical methods. A top-level view of the

proposed system architecture is shown in Figure 1.
In this work, we experiment with one simple instantiation

of this general idea. Specifically, we explore the possibility of

reconstructing workload at the granularity of a process, while

relying solely on information available through monitoring the

TLB and statistically processing this information. Considering

our objective of developing a hardware-based solution, how-

ever, we need to address the semantic gap problem. Indeed,

we need to identify a process directly at the circuit level (i.e.,

without relying on data available at the OS level), so that

we can associate with it the logged information that will be

used for workload reconstruction. Fortunately, thanks to the

work in [15], the CR3 register of x86 resolves this problem,

as changes in the CR3 value perfectly match the events of

process creation, switching and termination. Accordingly, by

monitoring the CR3 register, delineating processes becomes

possible, thereby bridging the semantic gap.

168 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

software

hardware
Download
data bus

Upload
data bus

user
environment

analysis
environment

logging
module

analysis
module

Fig. 1: High-level system architecture

Below, we provide details of the two key components of our

system, namely the logging module and the analysis module.

A. Logging module

Program execution typically follows phases, which can be

effectively predicted via performance counter values [17]. Per-

formance counters, however, generally contain global values,

reflecting performance of a microprocessor over its entire

workload. Moreover, order of program execution will affect

performance counter values. As a result, bridging the semantic

gap and associating these values accurately with OS-level

objects, such as processes, is not at all straightforward.
1) Logging object: To address this limitation, rather than

using performance counter values, our approach uses in-

structions causing TLB misses as its main logging object.

A TLB is a small cache memory which maintains recent

translations of virtual addresses to physical addresses. In x86,

when the CR3 value changes, the entire TLB is flushed. This

design convention benefits our approach in two ways. First,

all TLB events can be accurately associated with the process

represented by the current CR3 value. Second, the effect of

different order of program execution is mitigated, as the TLB

starts fresh with every process. Therefore, the granularity of

the logged data (i.e., process-level) matches our analysis target.
In x86, the TLB is split into two parts, one for instruction

addresses (iTLB) and the other for data access addresses

(dTLB). The logging module monitors the iTLB state and

identifies the instructions which raise an iTLB miss. Only

user-space instructions are considered in our scheme. In the

Linux OS, all virtual addresses higher than 0xC0000000 are

regarded as pointers to kernel space. Accordingly, our logging

module ignores iTLB miss events raised by such addresses. In

the end, each CR3 value, which represents a separate process,

can be associated with a sequence of instructions (which

caused iTLB misses). Figure 3 shows the logging logic.
2) Feature extraction: In order to use machine learning

for analysis, we extract a normalized set of features from

the logged data. In our scheme, we use features which

reflect both order and frequency information. Conceptually,

for each CR3 value, its associated set of instructions causing

iTLB misses is first partitioned into subsets of a maximum

size of partition_size. Partitioning helps retain order

information while reducing log size. In one extreme, choosing

partition_size to be 1 retains all instruction order infor-

mation but is too expensive and, most likely, unnecessary. In

the other extreme, no partitioning would minimize the log size

but would also sacrifice all order information, thereby limiting

CR3 value
Instruction 1
Instruction 2
…...
…...
Instruction 100

Instruction 1
Instruction 2
…...
…...
Instruction 100

operator operand(s)

update feature vector for each partition

6-class operator counters 12-class operand counters

F.V. 1
F.V. 2
…...
…...
F.V. end

final feature vector list attached to this CR3

Fig. 2: Feature extraction mechanism

the accuracy of the forensic analysis. In our system, we

experimented with partition_size of 100 instructions.

In practice, to minimize the required hardware, we do not

log the actual instructions in each partition but, rather, a set of

18 frequency features. These 18 features are extracted through

counters which are updated every time a qualifying iTLB miss

occurs, and reflect information regarding the operator and the

operands of the qualifying instruction, as shown in Figure 2.
The first six features capture the count of qualifying instruc-

tions for each of the following operator (Op.) types:

1) Data Op.: operations performing data manipulation,

such as storing/loading values, setting flags, etc.

2) Stack Op.: operations performing stack manipulation.

3) ALU Op.: operations performing arithmetic or logic

calculation.

4) Control Flow Op.: operations changing instruction ex-

ecution flow.

5) I/O Op.: operations working with x86 I/O ports and

interacting with peripherals.

6) Floating Point Op.: operations performing all FP re-

lated manipulation.

The remaining twelve features capture the count of qualifying

instructions which use the various types of operands (Opr.).

These include 8 features corresponding to the 8 general

purpose registers of 32-bit x86, one for memory reference,

one for XMM registers and floating point stack, one for all

segment registers, and one for immediate value.
A vector F.V.i =< Op.1, ..., Op.6, Opr.1, ..., Opr.12 >

is extracted for each partition. For each process, as iden-

tified through its CR3 value, a list of feature vectors

[F.V.1, ..., F.V.i, ...F.V.end] is collected, reflecting the order of

partitions. The length of this list is considered as an additional

feature. Ultimately, a feature matrix is generated, as shown in

Figure 2. We note that, since the number of partitions can

vary from process to process, once the data is off-loaded to

the analysis module and prior to statistical processing we use

zero padding for the feature lists of processes so that all lists

have the same number of columns in the feature matrix.

B. Analysis module

The objective of the analysis module is to reconstruct

workload execution at the granularity of a process, using the

extracted feature matrices. Since forensics is typically an ex
post facto effort, analysis is implemented in software and is

executed in a trusted environment. However, future extensions

could use dedicated on-chip learning to perform the analysis

directly in hardware, possibly even in real-time, in a fashion

similar to the malware detection method described in [17].

2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 169

startCR3 value
change? iTLB miss?

No No

Get the new
CR3 value

get the
instruction
raising the

miss

Yes

Yes

CR3 value 1

Instruction 1

…
...

User space
address?

No

Instruction 2

CR3 value 2

Instruction 1

Fig. 3: Logging logic

The actual analysis is based on machine learning and em-

ploys multi-class classification, where each class corresponds

to a single process. Additionally, previously unseen processes

are identified through outlier detection. We experimented

with two different non-linear multi-class classifiers of varying

complexity and performance, namely K-Nearest Neighbors

(KNN) and Support Vector Machine (SVM). KNN computes

the k nearest neighbors for a sample based on their Euclidean

distance and assigns the sample to a class based on majority

voting among these neighbors. SVM, on the other hand, gener-

ates decision boundaries which separate the feature space into

labeled sub-spaces, while ensuring maximal separation among

them. When evaluating a new sample, the SVM classifies

it based on the label of the sub-space that it falls into. An

important consideration when applying machine learning is the

high dimensionality of the feature matrix. Since the extracted

feature vector list may contain a large number of elements, it

is necessary to reduce the dimensionality before performing

classification, in order to avoid the curse of dimensionality.

To this end, we use Principal Component Analysis (PCA),

which generates a lower-dimensional feature matrix, while

retaining most of the information of the original matrix. In

our implementation, we used KNN from the Matlab library

and SVM from the LIBSVM library [18].

IV. LOGGING SYSTEM - HARDWARE IMPLEMENTATION

As mentioned earlier, our logging mechanism resides en-

tirely in hardware, therefore requiring modification in CPU

design, in order to eliminate the possibility of software attacks.

To minimize the required storage for the data log, feature

extraction is also implemented in hardware, with the final log

containing only the feature matrices.
The hardware logging module consists of three main com-

ponents, with its overall architecture shown in Figure 4:

Event Monitor: this component is used to monitor critical

events, including TLB miss, CR3 register update, program

counter update, etc. The event monitor serves as the main

controller of the entire logging system. In x86, the TLB is

implemented in the Memory Management Unit (MMU) and

miss events are handled transparently by the hardware. The

event monitor is expected to reside in the CPU but is also

connected to the iTLB cache memory to get notification when

a miss occurs. After the hardware resolves this miss (and

independently of whether a translation is found in the page

table or not), the event monitor picks up the instruction which

raised the iTLB miss and feeds it to the feature generator.

In parallel, the value of the CR3 register, which works as an

v/n v. addr. p. addr.
v/n v. addr. p. addr.
v/n v. addr. p. addr.
v/n v. addr. p. addr.

…
...

v/n v. addr. p. addr.

iTLB

MMU

event
monitor

CPU

user space iTLB miss

CR3 register

current instruction
after iTLB miss
fault resolved

feature
generator

instruction decoderinstr. 1

instr. 2

instr. 3

instr. 4

…...

instr. i

storage
system

CR3 value 1

F.V. 1

F.V. 2

…...

CR3 value 2

F.V. 1

final log

F.V. list

…...

Fig. 4: Logging system implementation in hardware

identifier of the current process, is monitored to ensure that the

current iTLB miss event is associated with the correct process.

Feature Generator: this component performs feature extrac-

tion for each instruction which raises an iTLB miss. During

decoding of such an instruction, the feature generator produces

the corresponding feature list according to the rules introduced

in Section III-A2. A temporary register is used to update the

values of a feature vector. When the partition size limit is

reached or the current process terminates, the final value is

sent to the storage system along with the CR3 value.

Storage System: this component is the actual space where the

logged information is stored. A FIFO buffer is used to handle

the clock difference between the CPU and the storage system.

To save memory space, zero padding is not done in hardware.

Instead, the size discrepancy between log entries is handled

during analysis. Periodically or continuously the logged data

is transmitted through a dedicated port, which is physically

inaccessible by the OS, to a trusted external storage or to the

environment where analysis is performed.

V. EXPERIMENTAL RESULTS

We now proceed to assess the effectiveness of our method

in correctly classifying known processes and identifying previ-

ously unseen ones. Additionally, we evaluate the data logging

rate required, as this reflects the incurred hardware overhead.
Our experiments were performed in Simics, wherein we

simulated a 32-bit x86 machine with a single Intel Pentium 4

core running at 2Ghz and containing 4GB of RAM, on which

we loaded a minimum installation Ubuntu server that embeds a

Linux 2.6 kernel, as our operating system. All collected data is

normalized and fed to the analysis software via Python/Matlab.

A. Process classification accuracy

To evaluate the accuracy of our method in correctly clas-

sifying processes, we use MiBench [19], a free commer-

cially representative benchmark suite as our workload, which

contains a few tens of application classes. The entire suite

was executed 100 times, with each application invoked with

various valid arguments or in the background (& option). We

also randomized workload execution to avoid the bias that a

specific order might impose. We exploit the Simics feature,

haps, to hook our event monitor on the iTLB and the program

counter. Our feature extraction method was then applied on

170 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

application
class

training
samples

testing
samples

KNN
accuracy

SVM
accuracy

overall 2386 2376 96.97% 96.63%

bash 1088 1087 100% 100%

cjpeg 25 25 100% 100%

djpeg 25 25 96% 100%

susan 75 75 100% 100%

search 50 50 98% 98%

madplay 50 50 96% 96%

tiff2bw 50 50 98% 94%

tiff2rgba 50 50 100% 100%

tiffmedian 50 50 96% 100%

basicmath 50 50 92% 90%

toast 50 50 96% 96%

untoast 50 50 94% 94%

rawcaudio 25 25 92% 92%

rawdaudio 25 25 52% 52%

......

run-parts 18 18 83.33% 83.33%

date 15 15 86.67% 86.67%

dpkg 11 11 72.73% 72.73%

savelog 9 9 55.56% 55.56%

cron 4 3 66.67% 66.67%

cmp 3 3 33.33% 33.33%

TABLE II: Process classification accuracy (subset of classes)

the workload log. In total, we collected a dataset containing

4762 samples, each comprising a feature vector matrix and

representing a process to be classified. Initial dimensionality

of the feature vector matrix was as large as 83612 and was

reduced to 200 after applying PCA. The reduced matrix was

then fed into the two classifiers. Half of the samples of each

application class were used for training and the other half for

testing. The process classification results using KNN and SVM

are shown in Table II. As may be observed, both classifiers

performed very well in correctly classifying the processes,

reaching an overall classification accuracy of 96.97% and

96.63% respectively. For most classes, this accuracy was even

higher. However, parasite processes such as savelog, cron,

and cmp, can be created sporadically during the execution of

MiBench applications in our simulation environment. Samples

of these processes were considered in our experiments but

their low frequency of occurrence limits the available samples

and undermines the corresponding classification accuracy.

Fortunately, considering their weight, their overall impact on

process classification accuracy is small.

A noteworthy exception is the process rawdaudio, for

which half of the instances are misclassified as rawcaudio,

despite the adequate number of training/validation samples.

This is explained by the fact that rawcaudio implements

an Adaptive Differential Pulse Code Modulation (ADPCM)

encoding algorithm, wherein rawdaudio, which implements

test # No. of seen
processes

No. of
outliers

FP rate FN rate

test 1 2269 214 11.98% 10.76%

test 2 2221 311 13.12% 3.51%

test 3 2302 149 12.25% 3.84%

test 4 2246 260 11.92% 2.44%

average N/A N/A 12.31% 5.13%

TABLE III: Summary of FP and FN rates in outlier detection

(a) Seen processes (b) Outlier processes

Fig. 5: Probability difference between top two classes

the corresponding decoding algorithm, is invoked as a ma-

jor functional unit. This inclusion introduces similarity and

reduces classification accuracy for rawdaudio. Additional

features of more advanced machine learning algorithms could

potentially address this limitation.

B. Outlier detection accuracy

To perform outlier screening, we leverage the probability

estimation available in the SVM. Given a sample, the SVM

provides not only the chosen class, but also a vector containing

the probabilities that this sample belongs to each known class.

The conjecture of our outlier detection method is that when

the sample comes from a known distribution (i.e., previously

seen), the probability of the winning class will dominate all

others, while when it comes from an unknown distribution

(i.e., outlier), multiple classes will exhibit fairly similar prob-

ability. Therefore, a simple outlier screening criterion is the

probability difference between the first and second most likely

classes. If this difference exceeds a threshold, which is learned

through cross-validation, the process is classified as an outlier.

To evaluate the effectiveness of our system in identifying

previously unseen processes, we repeated the experiment, this

time omitting 5 randomly selected classes from the training

set, while retaining them in the testing set to mimic outlier

processes. Through cross-validation, we set the threshold for

outlier screening to 0.6 and we applied it to the processes

in the testing set. Table III summarizes the results for four

different runs. For each run, we report the number of seen and

outlier processes in the test set, as well as the false positive

(FP) (i.e., seen process classified as outlier) and false negative

(FN) (i.e., outlier classified as seen process) error rates. As

may be observed, even the simple outlier screening method

described above results in high outlier detection accuracy,

with the average FP and FN values at 12.31% and 5.13%,

respectively. This effectiveness is explained through Figure 5,

2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 171

which confirms our conjecture. Indeed, for previously seen

processes, the probability difference between the top two

classes is overwhelmingly high, while for outlier processes

it is overwhelmingly low. Threshold adjustment can support

biased decisions, favoring one error direction, while advanced

outlier detection methods can further improve the results.

C. Logging overhead

To evaluate the overhead of our method, we focus on its

major hardware component, namely storage, and we seek to

assess the required data logging rate. Unfortunately, Simics

is not a cycle-accurate simulator. Therefore, to attain a more

accurate estimation, we calculated the logging rate as fol-

lows. For each partition of a process, our method requires

one feature vector containing 18 elements. If we assume

partition_size to be 100, as in our experiments, we only

need 7 bits for each element, since the occurrence frequency

can never exceed the partition_size. The number of

partitions per second for which a vector needs to be logged

is determined by the iTLB miss rate. Assuming clock cycles

per instruction (CPI) has an optimal value of 1, the estimated

logging rate is calculated step by step by the equations below:

F.V. size = 18× �log2 partition size� (1)

partition generation rate =
iTLB miss rate

partition size
(2)

bits/inst. = F.V. size× partition generation rate (3)

est. logging rate(bits/sec) =
bits/inst.× clk freq.

CPI(assumed = 1)
(4)

We ran our benchmark suite several times to obtain an average

iTLB miss rate, the value of which was 0.0016%, resulting in

an estimated data logging rate of only 5.17 KB/sec. While

a typical TLB miss rate is expected to be around 0.01-1%

[20], since we consider only user-space virtual addresses and

only iTLB misses, the relevant miss rate for our scheme is

much less. Furthermore, since we assumed an optimal CPI

of 1, the logging rate ought to be even lower in realistic

cases. As a point of reference, the performance counter-

based method in [17], which performs similar analysis with

a different objective (i.e., malware detection vs. workload

forensics), requires bandwidth of a few hundred KB/s.

VI. CONCLUSION

We introduced a hardware-based approach for performing

workload reconstruction and process identification for the

purpose of forensic analysis. Unlike OS-level and hypervisor-

level methods, which rely on information obtained through

the OS and are, therefore, vulnerable to software attacks,

this hardware-based method extracts and logs the required

information directly in hardware, making it impervious to such

attacks. Herein, we demonstrated a simple incarnation of this

general idea, which relies on identifying instructions causing

an iTLB miss and extracting/logging appropriate features,

based on which a statistical analysis can, then, perform process

identification. The proposed method was evaluated on a 32-bit

x86 architecture running Linux OS, which was implemented

in the Simics simulation environment, alongside a statistical

analysis module which employed KNN and SVM for the

purpose of process classification. Experimental results using

the popular Mibench benchmark suite reveal that despite the

semantic gap challenge, which we addressed through the

use of the CR3 register provided in x86, an overall process

classification accuracy of 96.97% can be achieved at the

cost of simple hardware additions capable of processing and

logging data at a rate of 5.17 KB/s.

REFERENCES

[1] L. Garber, “Encase: A case study in computer-forensic technology,”
IEEE Computer Magazine, Jan. 2011.

[2] AccessData. (2013) Forensic toolkit (ftk). [Online]. Avail-
able: http://accessdata.com/solutions/digital-forensics/forensic-toolkit-
ftk?/solutions/digital-forensics/ftk

[3] ArsenalRecon. (2013) Registry recon. [Online]. Available:
https://arsenalrecon.com/apps/recon/

[4] N.Quynh and Y. Takefuji, “Towards a tamper-resistant kernel rootkit
detector,” in ACM Symp. on Applied Computing, 2007, pp. 276–283.

[5] S. Krishnan, K. Snow, and F. Monrose, “Trail of bytes: New techniques
for supporting data provenance and limiting privacy breaches,” IEEE
Trans. on Information Forensics and Security, vol. 7, no. 6, pp. 1876–
1889, 2012.

[6] L. Litty, H. Lagar-Cavilla, and D. Lie, “Hypervisor support for identi-
fying covertly executing binaries,” in 17th USENIX Security Symp., pp.
243–258.

[7] Y. Fu and Z. Lin, “Space traveling across vm: Automatically bridging
the semantic gap in virtual machine introspection via online kernel data
redirection,” in IEEE Symp. on Security and Privacy, 2012, pp. 586–600.

[8] J. Pfoh, C. Schneider, and C. Eckert, “Nitro: Hardware-based system
call tracing for virtual machines,” in 6th International Conference on
Advances in Information and Computer Security, 2011, pp. 96–112.

[9] C. Kolbitsch, P. Milani, C. Kruegel, E. Kirda, X. Zhou, and X. Wang,
“Effective and efficient malware detection at the end host,” in 18th
USENIX Security Symp., 2009, pp. 351–366.

[10] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using dynamic
and static behavioral models,” Pattern Recognition, vol. 36, pp. 229–243,
2003.

[11] J. Cabrera, L. Lewis, and R. Mehara, “Detection and classification of
intrusion and faults using sequences of system calls,” ACM SIGMOD
Record, vol. 30, no. 4, pp. 25–34, 2001.

[12] D. Perez-Botero, J. Szefer, and R. Lee, “Characterizing hypervisor
vulnerabilities in cloud computing servers,” in International Workshop
on Security in Cloud Computing, 2013, pp. 3–10.

[13] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through
system call sequence and argument analysis,” IEEE Trans. on Depend-
able and Secure Computing, vol. 7, no. 4, pp. 381–395, 2010.

[14] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: Using system-centric models for malware protection,” in
17th ACM conference on Computer and Communications Security, 2010,
pp. 399–412.

[15] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Antfarm: Track-
ing processes in a virtual machine environment,” in Annual Conference
on USENIX, 2006, pp. 1–14.

[16] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Dis-
covering and exploiting program phases,” IEEE Micro, vol. 23, no. 6,
pp. 84–93, 2003.

[17] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” in 40th Annual International Symp. on
Computer Architecture, 2013, pp. 559–570.

[18] C. Chang and C. Lin, “LIBSVM: A library for support vector machines,”
ACM Trans. on Intelligent Systems and Technology, vol. 2, pp. 1–27,
2011.

[19] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in IEEE International Workshop on Workload Char-
acterization, 2001, pp. 3–14.

[20] D. Patterson and J. Hennessy, Computer Organization And Design.
Hardware/Software Interface. 4th edition. Morgan Kaufmann, 2009.

172 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

