‘ PROPERTY-BASED TESTABILITY ANALYSIS FOR
. HIERARCHICAL RTL DESIGNS

Yiorgos Makris & Alex Orailoglu

Reliable Systems Synthesis Lab —~ CSE Department
University of California San Diego
9500 Gilman Drive 0114, La Jolla, CA 92122, USA

ABSTRACT

We present an analysis methodology that identifies
testability bottlenecks in RTL designs, based on the
concept of transparency properties. We discuss a
hierarchical test generation methodology, wherein test
is locally generated for each module and subsequently
translated into global design applicable test. We
introduce the notion of transparency properties for
capturing test translation related behavior of modules,
without reasoning on the complete functionality of the
design. A recursive search algorithm that combines
properties into test justification and propagation paths
and reveals the reachability bottlenecks for each
module in the design is subsequently devised. An
ATPG-based experimental setup validates that the
proposed methodology identifies accurately the test
translation bottlenecks in the hierarchical design.

1. INTRODUCTION

Continuous silicon-manufacturing technology
improvements have enabled the realization of extremely
large and complex designs that have by far outpaced the
capacity of the EDA tools to handle them as monolithic
entities. Significant effort has been consequently
invested in devising hierarchical approaches for
accommodating current and future design and test
needs. Hierarchical test generation, as depicted in Fig.
(1), comprises a promising and viable alternative to the
slow and complex global design gate-level test
generation process. Local test can be quickly and
efficiently generated for each module of a hierarchical
design and consequently translated to global test,
applicable at the complete design boundary.

Giobally
Generated
Test

i
Complexity

Locally
Generated
Test

Globally
Translated
Test

Fig. (1): Hierarchical Test Generation Framework

0-7803-5682-9/99/$10.00©1999 IEEE.

Despite the fact that such approaches are
independent of the local test generation mechanism and
the targeted fault models, their success has been heavily
dependent on the efficacy of the test translation
process. Test translation approaches that attempt to
explore exhaustively the complete functional space of
the upstream vector justification and downstream
response propagation logic, are doomed by the same
complexity barrier as global design test generation. Test
transparency related behavior has been alternatively
employed for the surrounding modules, while
translating local into global test. Although such
approaches make translation a fast and trivial process
when transparency exists, partial transparency or lack
of transparency, even for a single module, proves
catastrophic for the translation process, resulting in
very low fault coverage. Defining the transparency
notion becomes therefore a crucial task, constituting the
trade-off mechanism between the complexity and the
efficiency of the local-to-global test translation process.
The role of testability analysis is to identify the test
translation bottlenecks in the design, in order to provide
valuable information that can be used for guiding the
translation process and for incorporating judicious DFT
enhancements in the design, as discussed in {10].

Section 2 briefly reviews previous work in the area
of hierarchical test generation, testability analysis and
test translation transparency definition. Section 3
introduces a novel transparency definition through the
concept of transparency properties, based on which a
hierarchical testability analysis methodology for
bottleneck identification is devised in section 4.
Experimental data validating the results is provided in
section 5.

2. PREVIOUS WORK

Several testability analysis methodologies,
hierarchical test generation approaches and distinct
transparency definitions have been proposed, in an
effort to address large designs. A representative set of
these approaches is discussed in this section.

The concepts of I-Path and T-path for capturing
module transparency, in terms of identity and
transformation functions respectively, was introduced
in [1]. These one-to-one and onto functions are limited
to equal bitwidth signal entities and only the I-Path was
pursued for hierarchical test generation. The path
notion was extended in [5] through arbitrary onto

1089

functions (S-paths) for providing stimuli to a module
and arbitrary one-to-one functions (F-paths) for
propagating fault responses. A hierarchical test
generation scheme and a test result propagation
methodology based on ambiguity sets were introduced
in (11,12]. Complexity issues limit the applicability of
these methods to small combinational datapath circuits.
A methodology for extracting test knowledge for
hierarchical designs in terms of modes was proposed in
(16]. Modes are combined over test justification and
propagation paths {17], in order to translate test. Highly
transiatable local test is generated in [15] by
incorporating global design knowledge in the test
generation process in terms of constraints. High-level
architectural information is used in [8] for similar
purposes. Constraint extraction complexity limits these
approaches, necessitating an efficient transparency
definition. Finally, various general approaches for
addressing behavioral and RTL testability analysis have
been suggested in {3, 4, 7].

3. TRANSPARENCY PROPERTIES

In this section we introduce a mechanism for
capturing test translation related behavior of modules in
a design. This behavior is utilized for examining the
reachability of the module under test and identifying the
test translation bottlenecks. Since exhaustive
examination of the complete functional space is
impossible due to complexity issues, we rely on
capturing only test translation related behavior for each
module and utilizing only this behavior for test
justification and propagation. Although this scheme
sacrifices some of the behavioral space, it provides the
ability to reason on the translation capabilities of the
design in an automated fashion.

The proposed scheme is based on arithmetic
properties of modules and targets mainly data path
modules, while the control logic is handled through
FSM analysis. The basic concept underlying the
property-based methodology is the utilization of
arithmetic properties that can provide a simple
transparency mechanism over modules. The algebraic
scheme composed by the arithmetic properties, allows
bulk mode translation of test requirements.

Properties - Identity, Negation, Linearity,
Initialization,Increm entality, etc.

Operators : Logical AND,NOT, OR,
Independent Path, <, >, =, < >, +, *, etc.

A{l:0}

B [1:0]

Cl3:0}]
Linearity dentity
C{3:0](t] = A{3:0]([t]l+ ¢ C1:0](t] = A[1:0](¢]
IF B[3:0} [t] = ¢ IF B1:0] [t] = ‘01"
CLR

O13:

i
ipitialization Incrementality
0[3:0] [t+1] = ‘0000" O([3:0}ft+1] = 0[3:0](t]+ 1
[F CLR [t] = *~ IF CLR {t] = ‘0"

Fig. (2): Transparency Properties of RTL Modules

1090

Arithmetic properties do not capture the complete
functional space of the modules but only the behavior
that is most appropriate for test translation. Using this
behavior, testability requirements at the inputs of a
module are translated to equivalent requirements at the
outputs of the module and vice versa. The new
requirements are possibly related through operators and
are based on the satisfiability of a number of
conditions, as demonstrated in the examples of Fig. (2).

Similarly, condition compliance examination is
based on the same property combination scheme. The
types of properties that our scheme considers include
identity, linearity, negation, initialization and
incrementality. The operators used for combining these
properties are both in the arithmetic domain (e.g. +, *,
<, =, >, etc.) and in the structural path domain (e.g.
logical AND, NOT, OR, etc.). The arithmetic property
scheme is capable of handling both combinational and
sequential modules since timing is captured as part of
the properties, as demonstrated on the 4-bit counter.

The introduced transparency properties constitute a
powerful mechanism for capturing test translation
related behavior of modules in a hierarchical design,
facilitating an efficient hierarchical testability analysis
scheme that reveals the testability bottlenecks of the
design, as discussed in the following section.

4. HIERARCHICAL ANALYSIS

The central ideal of the analysis methodology is the
examination of the satisfiability of test justification and
propagation objectives defined at the boundaries of
each module. An objective is defined as the
justification of values to the inputs of a module or the
propagation of responses from the outputs of a module
using transparency properties of surrounding modules.
Objective examination for a particular module is a two-
step process. First, the objectives have to be identified
at the boundary of the module under test. Subsequently,
their satisfiability needs to be analyzed, in order to
pinpoint potential test translation bottlenecks.

i) Objective Identification: Since the actual test
vectors and responses are not known at the time of
analysis, the most naive way is to try to justify every
possible value to the inputs of the module under test
and propagate every possible value from the outputs of
the module under test. A more informed approach is
taken herein to ease this overkill. We examine the
module under test and identify the cones of logic that
each input drives and the cones of logic that each
output is driven by. This input/output mapping is an
indication of the decomposability of the module,
through which the dependent sets of inputs and outputs
can be extracted and used for defining more realistic
objectives in a stream-wise manner. Another factor
determining the time aspect of the objectives is the
sequential depth of the module. This idea is depicted in
Fig. (3), identifying the justification and propagation
objectives on a 4-bit register. The sequential depth of
the register is 1, therefore we need 2 back-to-back
vectors to test it.

IN[0]>OUT[0) IN[3.0] CLR~ OUT[OJ<IN[0], CLR

IN{1]1>0UT[1] D- + OUT(1)<IN[1], CLR
IN[2]>0UT[2] ABIT OUT[2]<IN[2], CLR
IN[3]>0UT[3} REGISTER OUTI3]<IN[3], CLR
CLR> OUT([3:0]
| [outy3.0]
Objectives:

1) Justify Full Potential (IN[0], CLR) at [t, t+1]
AND Justify Full Potential (IN[11, CLR) at [t, t+1]
AND Justify Full Potential (IN{2], CLR) at [t, t+1]
AND Justify Full Potential (IN[3], CLR) at [t, t+1)
2) Propagate Full Potential OUT [3:0] at [t, t+1]

satisfy_objective (objective) {
for each signal entity in objective do {
find relevant module in the design;
repeat until no more available properties for module {
select property;
if conditions comply satisfy_objective(new_objective); }
if not satisfied store best-match bottlenecks; } }

main { repeat until no more modules {
for each module {
identify_objectives(module_under_test);
for each objective {
satisfy_objective(objective);
report bottlenecks of modules on final path; | } }

Fig. (3): Objective Identification Example

ii) Objective Satisfiability: The algebraic scheme is
based on objective transformation through the notion of
properties. Starting from the signal entities on which
the objective is defined, we utilize the global circuit
connectivity information to identify the module that the
signal entity is coming from or going to. Then, we
select a property for this module that will transform the
objective into a number of objectives at the other
boundary of the module, related through operators and
a number of conditions. The compliance of the
conditions is subsequently examined and if there is no
conflict the procedure is repeated for the new
objectives. Otherwise, a new property is selected. At
the end, objectives are either satisfied through
controllability/observability points such as primary
inputs/outputs or they are not satisfiable in which case
we report the corresponding signal entities as
bottlenecks. This procedure is further described in the
algorithm of Fig. (4), details of which are given in [9].

Selecting judiciously among the alternative
properties that satisfy an objective over a module has a
significant impact on the amount of backtracking
performed by the search algorithm. A number of
decision factors are examined in order to speed things
up. Factors are extracted from the circuit connectivity
model and include the number of signal entities,
conditions and clock cycles of alternative properties
and the potential formation of reconvergence or loops.

5. EXPERIMENTAL VALIDATION

The proposed methodology for test justification
and propagation analysis identifies the potential
controllability and observability bottlenecks in the RTL
design. This section describes the experimental

Fig. (4): Objective Satisfiability Algorithm

validation framework employed for examining the
analysis accuracy.

An overview of the validation flow is provided in
Fig. (5). In compliance with the test framework of Fig.
(1), our experimental setup utilizes HITEC {13], a gate-
level ATPG tool and is based on fault coverage
comparison acquired from the fault simulator PROOFS
[14]. Starting with an RTL description of the circuit,
the described analysis methodology is applied and a list
of controllability and observability bottlenecks is
acquired. Subsequently, synthesis provides a gate-level
model on which our ATPG experiments are performed.

First, the ATPG tool is applied on each design
module and local tests are generated. Each local test is
translated to the boundaries of the complete circuit and
global test is obtained and fault simulated, providing
the global fault coverage GFC. The same experiment is
then performed on an enhanced version of the design,
wherein all the identified bottlenecks are considered
controllability and observability points respectively,
providing the modified GFC fault coverage.

The above experimental setup was applied on three
benchmark designs, and the results are summarized in
Table (1). The first design (MTC100) is a 3-module
circuit first introduced in [16], with interesting
feedback loop behavior, resulting in major slow-down
for ATPG tools. The second design is an 8-bit binary
sign-magnitude shift-&-add multiplier = (MUL)
described in [6], on which analysis is performed both
with and without the controller. The third circuit is a
pipelined multiplier accumulator (MAC) for complex
numbers, described in [2], consisting of 23 modules,
including arithmetic blocks such as multipliers and
adders, along with registers and simple control logic.

(HITEC)

‘

Translation
Bottlenecks

&

(PROOFS)

I~

Modified
GFC

Fig. (5): Experimental Validation Flow

1091

96.68 % 89.70 % .

97.45 % 90.57 % 95.76 %
94.52 % 62.67 % 88.56 %
96.44 % 67.24 % 90.15 %

able (1): Experimental Results

The analysis methodology indicates that the
MTC100 and the MUL without the controller are
highly transparent and that no major bottlenecks exist
in the design. Consequently, we expect translation to be
highly successful. Summing up the total covered faults
and dividing by the total number of faults, we obtain
96.68% and 97.45% fault coverage, respectively. After
the local test is translated to test applicable at the global
design boundary, coverage drops slightly to 89.70%
and 90.57% due to the small number of bottlenecks. A
new translation after bottleneck resolution through test
point insertion increases the coverage to 94.62% and
95.76%, respectively.

When the controller of the MUL is also
considered, the corresponding coverage loss due to test
translation bottlenecks is considerably larger, resulting
in a drop from 94.52% to 62.67%. Resolving the many
bottlenecks, revealed by testability analysis in this case,
goes a long way towards eliminating the translation
problems, as can be seen by the drastically improved
coverage of 88.56%. Similarly, in the case of the MAC,
the property-based analysis identifies numerous
justification and propagation bottlenecks in the design.
The coverage drops from 96.44% achieved by the local
tests to 67.24% achieved by the translated test on the
original circuit. After the bottlenecks are resolved, the
coverage of the new translated test increases to 90.15%,
validating the accuracy of the methodology in
identifying test translation bottlenecks.

6. CONCLUSIONS

Size and complexity considerations impede test
generation tools that attempt to address modern designs
as monolithic entities, revealing the imperative need for
hierarchical approaches. In order to constitute viable
alternatives, such hierarchical approaches require that
locally generated vectors can be translated into global
design meaningful test. We present a testability analysis
methodology that identifies the bottlenecks of the test
translation process in a prompt and efficient manner,
without exhaustive reasoning on the complete design
functionality, in order to avoid complexity pitfalls. The
introduced concept of transparency properties for
capturing test translation related behavior of modules
facilitates a traversal algorithm that searches for test
justification and propagation reachability paths for
every module in the hierarchical design and reports the
test translation bottlenecks. The accuracy of the
identified bottlenecks is validated through the described
experimental setup, making the proposed analysis

1092

scheme a useful resource for assisting hierarchical test
generation and DFT related decisions.

REFERENCES

[11 M. S. Abadir, M. A. Breuer, “A Knowledge-Based
System for Designing Testable VLSI Chips”, /EEE
Design and Test of Computers, vol. 2, no. 4, pp. 56-68,
1985.

[2] P. Ashenden, The Designer’s Guide to VHDL, Morgan-
Kaufmann Publishers Inc., 1996.

[3] C-H. Chen, T. Karnik, D.G. Saab, “Structural and
Behavioral Synthesis for Testability Techniques”, IEEE
Transactions on CAD of Integrated Circuits and
Systems, Vol. 13, No. 6, pp. 777-785, 1994.

[4] F. Corno, P. Prinetto, M. Sonza Reorda, “Testability
Analysis and ATPG on Behavioral RT-Level VHDL”,
Proceedings of the International Test Conference, 1997,
pp. 753-759.

[5] S. Freeman, “Test Generation for Data-Path Logic: The
F-Path Method”, [EEE Journal of Solid-State Circuits,
vol. 23, no. 2, pp. 421-427, 1988.

[6) J.P. Hayes, Computer Architecture and Organization,
McGraw-Hill, 3rd Edition, 1998.

[71 J. Lee, J. Patel, “Testability Analysis Based on
Structural and Behavioral Information”, Proceedings of
the 11™ IEEE VLSI Test Symposium, 1993, pp. 139-
145.

[8] J. Lee, J. H. Patel, “Hierarchical Test Generation under
Architectural Level Functional Constraints”, [EEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 15, no. 9, pp. 1144-1151,
1997.

[91 Y. Makris, A. Orailoglu, “RTL Test Justification and
Propagation Analysis for Modular Designs”, Journal of
Electronic Testing: Theory & Applications, Kluwer
Academic Publishers, vol. 13, no. 2, pp. 105-120, 1998.

{10] Y. Makris, A. Orailoglu, “DREI Guidance Through RTL
Test Justification and Propagation Analysis”,
Proceedings of the International Test Conference, pp.
668-677, 1998.

[11} B. T. Murray, J. P. Hayes, “Hierarchical Test Generation
Using Precomputed Tests for Modules”, I[EEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 9, no. 6, pp. 594-603, 1990.

{12] B. T. Murray, J. P. Hayes, “Test Propagation through
Modules and Circuits”, Proceedings of the International
Test Conference, pp. 748-757, 1991.

[13] T. Niermann, J. H. Patel, “HITEC: A Test Generation
Package for Sequential Circuits”, Proceedings of the
European Conference on Design Automation, pp. 214-
218, 1992.

[14] T. Niermann, W. T. Cheng, J. H. Patel, “PROOFS: A
Fast, Memory Efficient Sequential Circuit Fault
Simulator”, Proceedings of the 27" ACM/IEEE Design
Automation Conference, pp. 535-540, 1990.

[15] R. S. Tupuri, J. A. Abraham, “A Novel Test Generation
Method for Processors using Commercial ATPG”,
Proceedings of the International Test Conference, pp.
743-752, 1997.

[16) P. Vishakantaiah, J. A. Abraham and M. S. Abadir,
“Automatic Test Knowledge Extraction From VHDL
(ATKET)”, Proceedings of the 29" ACM/IEEE Design
Automation Conference, pp. 273-278, 1992.

[17]1 P. Vishakantaiah, J. A. Abraham, D. G. Saab,
“CHEETA: Composition of Hierarchical Sequential
Tests using ATKET”, Proceedings of the International
Test Conference, pp. 606-615, 1993.

