ISCAS 2000 - |EEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

TRANSPARENCY-BASED HIERARCHICAL TEST GENERATION
FOR MODULAR RTL DESIGNS

Y. Makris', J. Collins’, A. Orailogl', P. Vishakantaiah®

"Reliable Systems Synthesis Lab, MC-0114
CSE Dept., University of California San Diego
9500 Gilman Dﬁve, La Jolla, CA 92093, USA

ABSTRACT

We discuss a novel hierarchical test generation methodology for
RTL designs, based on the concept of modular transparency. We
introduce the channel notion, a powerful mechanism that
captures modular transparency in terms of bijection functions
defined on variable bitwidth signal entities. Through a recursive
search algorithm, transparency channels are further combined
into reachability paths suitable for translating local test vectors
for each module into global design test. A divide & conquer
hierarchical test generation methodology is described, resulting
in significant test generation time speed-up and comparable fault
coverage and vector count to complete circuit gate-level ATPG.

1. INTRODUCTION

System-On-Chip (SOC) design trends exploit the continuous
technology improvements in order to realize large and complex
circuits in a modular fashion. Such circuits however, have by far
outpaced the capacity of the EDA tools to handle them as
monolithic entities. Furthermore, the time-to-market constraints
of SOC designs necessitate tools that operate early in the design
cycle, on levels higher than the gate-level. Significant efforts are
consequently invested in devising hierarchical RTL approaches
for accommodating current and future design and test needs.

Hierarchical test generation, as depicted in Figure (1), constitutes
a promising alternative 1o the slow and complex global design
gate-level test generation. Local test is quickly generated for each
module and translated to global test, applicable at the complete
design boundary. While local test generation is highly efficient,
the success of such schemes depends heavily on the efficacy of
test translation. Exhaustive reasoning on the complete functional
space of the surrounding modules to perform vector-by-vector
test translation is doomed by the same complexity barrier as
global test generation. Transparency behavior is alternatively
employed in order to perform fast, symbolic test translation.

Modular RTL Design

Figure 1. Hierarchical Test Generation.

0-7803-5482-6/99/$10.00 ©2000 IEEE

11-689

*Intel Corporation
2501, 229" AVE, MS:RA2-401
Hillsboro, OR 97124, USA

Section 2 reviews previous work in the area of hierarchical test
generation and test translation transparency definition. Section 3
introduces a novel transparency definition through the concept of
channels, based on which a hierarchical test generation
methodology is devised in section 4. Experimental data in
support of the proposed scheme is provided in section 5.

2. PREVIOUS WORK

Several hierarchical test generation approaches and distinct
transparency definitions have been proposed in the literature. The
concepts of I-Path and T-path for capturing module transparency
in terms of identity and transformation functions respectively
were introduced in [1]. These one-tfo-one and onto functions are
limited to equal bitwidth signal entities and only the I-Path has
been pursued for hierarchical test generation. The path notion
was extended in [3] through arbitrary onto functions (S-paths)
for providing stimuli to a module and arbitrary one-to-one
functions (F-paths) for propagating fault responses. A
hierarchical test generation scheme and a test result propagation
methodology, based on ambiguity sets, were introduced in
[9,10]. Complexity issues limit the applicability of these methods
to small datapath circuits. Test knowledge extraction for
hierarchical designs is captured in terms of modes in [14], and
further combined into test translation paths in [15]. Highly
translatable local test is generated in [13] by incorporating global
design constraints in the test generation process and high-level
architectural information is used in [6] for similar purposes.

3. TRANSPARENCY CHANNELS

A novel mechanism for expressing transparency behavior of RTL
modules in terms of channels is introduced in this section and its
applicability for constructing test translation paths is discussed.

3.1 Transparency Channel Definition

Transparency channels capture modular transparency in terms of
bijection functions between input and output signal entities.
Channel functions may be bit-decomposable (e.g. left rotation) or
not (e.g. addition MOD k). Channels are instantiated upon
compliance of conditions that require a specific potential on
signal entities. The potential may be either controllability or
observability of the signal entity to a set of values. Signal entities
may be defined either on the full word bitwidth or on sub-word
bitwidths. A succinct definition of the transparency channels is
given in Figure (2) along with a few examples of simple RTL
modules and associated channels.

1 C L Definit

Channe): <signal entity> time <channel function> <signal entity> time <conditions>
| <well> time <channel function> <signal entity> time <conditions>
| <signal entity> \ime <channel function> <drain> tlime <conditions>

Signal Entity: (module input bits | module outpul bits)
Chaanel Function: <decomposability> bijection function
Decomposability: bit-decomposable | non bit-decomposable
Conditions: <condition>
| < condition> <operator> <condition>
|@
Condition: <potential> <signal entity> time
Operstor: {and | or|independent of)
Well: (primary inputs | internal module output bits} <controllability potential>
Drain: (primary outputs | internal module input bits) <observability patential>

Potentiak: (controllability | abservability)
full | known constant | unknown constant | mutex | same)

Cout Cl3:0)

Exomples
A[3:0] B[3:0] IN(3:0] 113:0]

CLR
4-bit Adder LD 4 to 2 Encoder

4-bit Left
Rotator

ROT
0(1:01

ADDER .
1) Af3:0) [t) (+k MOD16) C[3:0]) [t) IF (known constant 'k’) B]3:0} {t)
2) A[3) (1] (Identity) Cout [t} IF (same) A(3]B{3] {t]

ROTATOR .
1) IN{3:0} {1] (Identity) OUT[3:0] {t+1) IF (known constant ‘00")
([CLR] (ROT}) (t] AND (known constant ‘1°) (LD) [t}
2) OUT{3:0] [t] (Rotate Left k bits) OUT[3:0} [t+k] IF
(known constant ‘00°) ([CLR] (LD) {t, t+1,...,t+k-t] AND
(knowa constant *1") (ROT) {t, ¢+ 1. .., t+k-1}

ENCODER
1) 113:0] {1) (Identity) MUTEX Potential Drain {1) IF FULL Potentia) Drain O[1:0) 1]
2) FULL Potential Well [t} (Identity) O[1:0} [{) [F MUTEX Potential Well [1) 1[3:0} [1]

Figure 2. Transparency Channel Definition and Examples.

3.2 From Channels To Paths

Combining channels into test translation paths requires that the
rules of Figure (3) be observed. Channels can be combined in
series as in Figure (3)(a), provided that the conditions for
realizing them do not conflict in space, time or potential.
Condition checking is performed in a centralized fashion for all
modules and paths in the design. Channels can also be composed
in parallel either in the same module or in different modules, as
in Figure (3)(b), provided that the conditions do not conflict. In
addition, the signal entities of the channels need to remain
independent of each other for the composition to be valid.
Splitting a channel, in order to accommodate more than one path,
is more complex. If the channel is decomposable, as in Figure
(3)(c), then we can simply follow the bit decomposition and keep
the paths apart. Condition conflicts are not an issue here, since
only one channel is utilized. However, if the channel is not
decomposable, as in Figure (3)(d), we cannot preserve the
separation of the paths. The only solution in this case is to create
a new path, possibly wider than the sum of the bitwidths of the
individual paths, that accommodates both by utilizing the
complete channel. These rules guarantee that the full potential
capability will be preserved after merging or splitting channels.

4. HIERARCHICAL TEST GENERATION

Transparency channels facilitate a powerful hierarchical test
generation scheme, resulting in significant test generation time
reduction and highly efficient test for modular designs. Local test
is generated for each module and subsequently translated through
paths of channels into global design test. The proposed
hierarchical test generation scheme, shown in Figure (4), is
independent of the actual method employed for local test
generation for each module. In addition, channel-based
translation paths are identified regardless of the local test vectors.
As a result, local tests can be modified and enhanced in order to

provide higher fault coverage, without invalidating the
translation paths. The fault coverage attained by the local vectors
is an upper bound to the fault coverage of the globally translated
vectors, for each particular module. Therefore, the local test
generation process should maximize the number of translatable
patterns, possibly by employing approaches that guide the local
test generation with global design knowledge, such as {6,13].

A recursive design traversal algorithm is applied for each module
in the design, employing transparency channels in order to
identify test justification and propagation paths. For each module
under test, internal module connectivity is examined and test
justification and propagation requirements are defined.

The algorithm traverses the design, backtracking as necessary, in
order to satisfy the requirements. While traversing an upstream or
downstream module, available channels are probed as to their
suitability for providing the required potential. Channels may be
combined into wider channels or broken into smaller ones,
according to the rules of section 3.2. Reconvergence and
feedback loops are considered in order to prioritize the probing
of channels, accelerating algorithm convergence. The search ends
when wells or drains of the required potential are encountered, .
satisfying the requirements. The transparency channels and
conditions on the test translation paths are reported and
subsequently combined into test translation templates for each
module. If the requirements of a module cannot be completely
satisfied, a set of best-match paths, along with a set of test
translation bottlenecks for testability enhancement are provided,
as discussed in [8). An extensive description of the test
requirements, the recursive path identification algorithm and its
applicability on testability analysis may be found in [7].

The transparency channels on the identified vector justification
and response propagation paths are combined into test translation
terplates that apply the reverse effect of the channel functions on
the translation path, performing rapid test translation. '

T e

#1 CH#2) IF:

CH#3 =MERGE (CH#1 CH#2)IF: . No Condition Conflict
. No Condition Conflict . Independent Signal Entitics
(a) (b)

Path #1

Path #2 Paths #1 and #2

Path #2

Path #1 Path #1
(c) (d)

Path #2

Figure 3. Rules for Combining Channels into Paths.

1I-690

I\ Repeat ¥ M odules
]
!

Figure 4. Channel-Based Hierarchical Test Generation.

5. EXPERIMENTAL RESULTS

The three-phase experimental setup of Figure (5), is employed to
validate the adequacy of transparency channels for performing
test translation and the efficiency of the proposed scheme:

PHASE #1: The RTL description of the complete design is
synthesized and full-circuit ATPG is applied on the obtained
gate-level view. Global test, along with the test generation time
Tp, fault coverage Cg, and vector count Vi, is thus obtained.

PHASE #2: The proposed hierarchical test generation
methodology is applied and the test translation paths for each
module in the design are obtained in time Tp. The first module is
synthesized and gate-level ATPG is applied on it, providing the
local test vectors and the test generation time 77, fault coverage
C,, and vector count V,, These vectors are translated through the
identified translation paths and fault-simulated on the complete
circuit gate-level view for all design faults. The test translation
time TR, and the fault simulation time F, are also noted. The
process is repeated for each remaining module, targeting only
faults that have not been covered by previous global vectors. The
results are accumulated and the corresponding time Ty, fault
coverage Cs and vector count Vy are obtained. The objective of
this phase is to compare this methodology to full circuit ATPG,
based on test generation time, fault coverage and vector count.

PHASE #3: |Vi| random patterns are fault-simulated on the
original design and the corresponding coverage Cy is obtained.
The objective of this phase is to demonstrate that the global
patterns generated by the proposed methodology provide higher
fault coverage than randomly generated patterns.

HITEC [11}], PROOFS [12] and HOPE {5] are used for test
generation, fault simulation, and random pattern test generation.
A prototype tool called TRANSPARENT (TRANSlation Path
Analysis RENdering Test) was employed for identifying test
translation paths and performing the actual translation. The
experimental setup was applied on three benchmark designs. The
first design (MTC100), is a 3-module circuit introduced in (14],
with interesting feedback loop behavior. The second design is an
8-bit shift-&-add binary multiplier (MUL) comprising 10
modules as described in [4]. The third circuit is a pipelined
multiplier accumulator (MAC) for complex numbers, comprising
23 modules, as described in [2]. The test generation time, vector
count and fault coverage, along with the number of aborted,
redundant and total faults is provided for the full circuit ATPG in
Table (1). In Table (2), we provide the time spent by
TRANSPARENT on identifying the translation paths and
performing the actual test translation, the total local test
generation time and the total fault simulation time. The results
are accumulated and the total test generation time, vector count
and fault coverage are shown and highlighted for comparison
purposes. In Table (3), the fault coverage obtained by fault
simulating |Vs) random patterns is provided. In all three circuits,
the channel-based hierarchical test generation scheme
outperformed full circuit ATPG in terms of total test generation
time. As shown in Table (4), in the first circuit the reduction was
almost at an order of magnitude, while for the other two circuits
it was approximately 65%. Table (5) shows that fault coverage
slightly increased in the first two circuits, while in the third there
was a 2.5% drop approximately. Random vectors achieved
significantly lower coverage in all cases. In terms of vector
count, a slight increase in the order of 10-15% was observed, as

(] eanammon man

Synthosis

Targeting
ANl Darign

Aemaining
Deaign
Fauite

Coverage ©,
o Tirve

F.8. Time &

R)

PHASE #1

PHASE #2

g Time T,
T T T T

[e

Moaule
] Transiation

ATL

Synihesie Translaton

3\
Maoaule Modutle #N \
Qlobal

QataLever Taet \

)

ATPG Targenng Faul Simulaton
ot

Fomainmy Targs

Modute # N Al Des

Faulta Eauu
Dewl

e
o
*
Rermatning
an
Fauite
s /

-

Patterns

Faust Stmutaton |
Targoting |
Al Daninn

Moduie #N

Figure 5. Experimental Setup.

11-691

Benchmark
Circuit

MTCI00

MUL

MAC

Benchmark
Circuit

MTCI100

Number of Sl Aborted Redundant Total
Modules - (sec) (faults) (faults) (faults)
3 338300 21 0 1055
10 1358 64 10 834
23 52130 6 238 480 28614
Table 1. Complete Design Gate-Level ATPG Results.
Number of Tp+ Z(TRy) Z(TNi) Z(Fni) Ts
Modules (sec) (sec) (sec)
3 0.30 0.117 0.02
10 2.80 1.670 0.16 i
23 5.32 1.250 2.30 8870 .

Table 2. Channel-Based Hierarchical Test Generation Results.

Benchmark

Circuit
MTCI100
MUL
MAC

Number of
)
3

Benichmark
Circuit

v) :
MTCI100 1034 faults 1038 faults

Benchmark
Circuit

MTCI100 3.383 sec
MUL 13.58 sec 4.63 sec
MAC 21.30 sec 8.87 sec
Table 4. Total Test Generation Time Comparison.

Benchmark
Circuit

MTCI00

146 vectors

760 faults

790 faults

569 faults

27896 faults

27245 faults

22454 faults

MUL

MAC

191 vectors

198 vectors

627 vectors

703 vectors

Table 5. Fault Coverage Comparison.

shown in Table (6). According to these results, transparency
channels facilitate a powerful hierarchical test generation scheme
that is a superior alternative to full circuit gate-level ATPG.

6. CONCLUSIONS

Size and complexity considerations impede test generation tools
that attempt to address modern designs as monolithic entities,
revealing the imperative need for hierarchical test generation
approaches. However, such approaches require fast and effective
mechanisms for translating locally generated vectors into global
design applicable test. Towards this end, we introduce a
definition that captures test translation capabilities of RTL
modules in the form of transparency channels. Channels are
further combined into test justification and propagation paths,
supporting symbolic test translation without exhaustive reasoning
on the complete functional space of the design. A hierarchical
test generation methodology is consequently derived, wherein
locally generated vectors are translated into global design test
utilizing solely transparency behavior. A theoretical analysis
along with a set of experimental results reveal that the proposed
hierarchical test generation scheme provides significant test
generation speed-up, while preserving fault coverage and vector
count comparable to complete design gate-level ATPG.

7. REFERENCES

[1} M. S. Abadir, M. A. Breuer, “A Knowledge-Based System for
Designing Testable VLSI Chips”, [EEE Design and Test of
Computers, vol. 2, no. 4, pp. 56-68, 1985.

[2] P. Ashenden, The Designer’s Guide to VHDL, Morgan-Kaufmann
Publishers Inc., 1996.

[3] S. Freeman, “Test Generation for Data-Path Logic: The F-Path
Method”, IEEE Journal of Solid-State Circuits, vol. 23, no. 2, pp.
421-427, 1988.

[4) J.P. Hayes, Computer Architecture and Organization, McGraw-
Hill, 3rd Edition, 1998.

11-692

Table 6. Vector Count Comparison.

[5] H. K. Lee, D. S. Ha, “HOPE: An Efficient Parallel Fault Simulator
for Synchronous Sequential Circuits”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
15, no. 9, pp. 1048-1058, 1996.

[61 J Lee, J. H. Patel, “Hierarchical Test Generation under
Architectural Level Functional Constraints ”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
15, no. 9, pp. 1144-1151, 1997.

[7] Y. Makris, A. Orailoglu, “RTL Test Justification and Propagation
Analysis for Modular Designs”, Journal of Electronic Testing:
Theory & Applications, Kluwer Academic Publishers, vol. 13, no.
2, pp. 105-120, 1998,

[81 Y. Makris, A. Orailoglu, “DFT Guidance Through RTL Test

- Justification and Propagation Analysis”, Proceedings of the
International Test Conference, pp. 668-677, 1998. .

{91 B. T. Murray, J. P. Hayes, “Hierarchical Test Generation Using
Precomputed Tests for Modules”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 9,
no. 6, pp. 594-603, 1990.

[10] B. T. Murray, J. P. Hayes, “Test Propagation through Modules and
Circuits”, Proceedings of the International Test Conference, pp.
748-757, 1991.

[11] T. Niermann, J. H. Patel, “HITEC: A Test Generation Package for

Sequential Circuits”, Proceedings of the European Conference on

Design Automation, pp. 214-218, 1992.

T. Niermann, W. T. Cheng, J. H. Patel, “PROOFS: A Fast, Memory

Efficient Sequential Circuit Fault Simulator”, Proceedings of the .

the 29" ACM/IEEE Design Automation Conference, pp- 535-540,

1990.

R. S. Tupuri, J. A. Abraham, “A Novel Test Generation Method for

Processors using Commercial ATPG”, Proceedings of the

International Test Conference, pp. 743-752, 1997.

P. Vishakantaiah, J. A. Abraham, M. S. Abadir, “Automatic Test

Knowledge Extraction From VHDL”, Proceedings of the the 29"

ACM/IEEE Design Automation Conference, pp. 273-278, 1992.

P. Vishakantaiah, J. A. Abraham, D. G. Saab, “CHEETA:

Composition of Hierarchical Sequential Tests using ATKET”,

Proceedings of the International Test Conference, pp. 606-615,

1993.

[12]

[13}

[14]

[15)

