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Abstract

We present a novel methodolbgy Jor concurrent error de-
tection in linear analog circuits. We develop .a rigorous the-
ory that yields an error detection circuit of size that is, in gen-
eral, much smaller than a duplicate of the circuit under test.
The error detection circuit monitors the input and some ju-
diciously selected observable internal nodes of the examined
circuit to produce an estimate of its output. In error-free op-
eration, this estimate converges to the actual output value in
a time interval that can be controlled to be sufficiently small.
From then onwards, it follows exactly the output. The es-
timate is constructed such that it does not converge in the
presence of errors and, thus, concurrent error detection is
performed by comparing the two signals through an analog
checker. The derived theory is validated through representa-
tive simulations on two filter examples. '

1. Introduction

Analog test solutions are essential to the success of mod-
ern systems that comprise analog interfaces [1, 2]. While
off-line test methods are capable of detecting manufacturing
faults, wear-and-tear faults and transient errors require addi-
tional care. In high safety applications, a circuit should moni-
tor itself and report potential deviations from its correct func-
tionality through a concurrent error detection mechanism.

The objective of concurrent error detection in analog cir-
cuits is to examine whether the output signals remain within a
predefined band around their nominal values and flag any de-
viation that is unacceptably large. The nominal band stems
from a transient worst-case analysis-[3]. Concurrent -error
detection is achieved by continuously examining whether an
inherent or imposed invariant property of the circuit is sat-
isfied. This property should reflect valuable information re-
garding the operational health of the circuit under test and,
ideally, should deviate from its nominal state whenever an
error occurs in the circuit response.

Processing analog signals and accurately measuring their
values constitute the main sources of difficulty in realizing an
invariant property. Additionally, to optimize error detection,
this property should exhibit the same level of sensitivity to
the parameter space as the actual outputs. Otherwise, the test
output will not reflect accurately the compliance of the circuit
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to its specifications. Thus, the probability of false alarms will
become non-negligible. Apart from choosing a property that
has this type of dependence on the circuit parameters, there
are additional, equally important objectives that need to be
considered. The error detection circuit should respond ac-
cordingly for all realistic signals and at the actual speed of
operation. This implies that the test criterion should adapt
automatically to the properties of the evaluated signals; also,
if several signals are combined to set the test criterion, there
should not exist a phase lag amongst them. Moreover, the
added circuitry should neither interrupt the normal operation
of the circuit under test nor degrade its performance. Any
performance loss has to be negligible. Last, but not least, any
method for concurrent error detection, by default, must re-
sult in a detection circuit of size less than that of the original
circuit. Otherwise, duplication would be more palatable.

A comprehensive overview of previously proposed
methodologies for concurrent error detection in analog cir-
cuits can be found in [4]. This topic has attracted much inter-
est recently, particularly for the class of linear circuits. In [5],
the time-invariant matrices of the state-variable equations are
encoded into a single continuous checksum as coefficients of
observable signals and their derivatives. The error signal is
then generated by a cascade of voltage summing configura-
tions and integrators. An extension of this work is presented
in [6], where the authors derive an optimal design of the error
detection circuit that minimizes the number of false alarms
under specific fault assumptions. The optimization problem
consists in finding appropriate values for the elements of the
coding vector. Another algorithm, presented in [7], finds the
coding vector which realizes the optimal error detection cir-
cuit in terms of hardware overhead. In [8], a projection tech-
nique which eliminates the unknown variables in the state

linear equations is employed, resulting in a checksum of in-

puts, outputs and their derivatives up to the order necessary
to generate the fault indicating signal. In [9], the nodal equa-
tions are combined in order to obtain an invariant signal.

In this paper, we present a novel method for designing
an error detection circuit of size that is, in general, much
smaller than a duplicate of the circuit under test and in the
worst possible case it does not exceed it. Additionally, this
size is predictable by simple observation of the circuit under
test. The circuit monitors a selected set of observable nodes
and produces an estimate of the output. Provably, this esti-
mate converges exponentially to the actual output value at a
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rate that can be controlled to be arbitrarily small. Once con-
vergence is accomplished, the estimate remains identical to
the output for any input change. An analog checker may then
be utilized to compare the output and its estimate and, thus,
to report potential unacceptable deviations.

The paper is organized as follows. In the next section,
we show a procedure to estimate a set of unobservable state-
variables in a linear time-invariant system. Based on this
theory, in section 3 we present the proposed concurrent er-
ror detection method. In section 4, we discuss design issues
related to analog checkers. In section 5, we illustrate two ex-
amples which validate the theory and, furthermore, reveal the
advantages of our method in terms of hardware overhead.

2. Reduced-size state estimation

A linear time-invariant analog circuit with m inputs and ¢
outputs has the following state-variable representation

&= Az + Bu 1
g=Mx+ Du

where u is the mm x 1 input vector, z is the n x 1 state-variable
vector, g is the £ x 1 output vector and A, B, M and D
are n X n, n x m, £ x n and £ X m real-valued matrices,
respectively. Suppose that p state variables are observable,
namely, we can monitor their value without degrading the
normal operation of the circuit. Let

y=Cz @)

be the p x 1 reduced-size state variable vector. C' is of dimen-
sion p x n. Every row has an one in the appropriate position
and the rest of the elements are all zero. Hence, rankC = p.
‘We show how to generate an asymprotic estimate of the re-
maining n— p state variables by using another linear dynamic
equation that accepts as inputs the inputs of the circuit, u, and
the reduced-size state variable vector, y [10]. The method for
producing the estimate also makes use of the coefficient ma-
trices in (1).

Since rankC = p, there exists a (n — p) X n matrix P,
such that the matrix P defined below is nonsingular

C
-1 _
P = [ P, ] 3)
This definition resuits to the following matrix equality
cpP
I= [ o } @

where I is the identity matrix. In the following, we rearrange
the state-variable vector such that the first p rows correspond
to the observable state-variables. For this purpose, letting
2(t) = P~lz(t), the state equations (1)-(2) become
¢=Fz+Gu
y=CPz ©)

where F = P"'AP and G = P~1B. Using (4), (5) can be
rewritten in the form

Zo | _ | F11 Fi2 E Gy
=R ]

y= [ Ipxp OpX(n—p) ] [ Fo }

©

2p

where the matrices Fi1, Fia, Fo1, Foo, G; and G5 are p X p,
px(n—p),(n-p)xp (n=p)x(n—p),pxmand
(n — p) X m, respectively, and the vectors z, and zg are
p x 1and (n — p) x 1, respectively. Clearly, y = z,.

Our aim now is to define a linear observer of the general
form

Zy=Hzy+ Kzo +Tu
W= 2, + Nzg

)

in such a way that along any trajectory of the combined linear
system (5)-(7), W converges to zg in the limit ¢ — oo, that is

Jim [W—23]=0 ®
We define the difference
eg=1z23—w &)

For w0 to asymptotically estimate zg it is, therefore, adequate
to ensure that eg converges to zero as ¢ — 00. Using (6) and
(7) and after some simple algebraic manipulations we obtain
the following error differential equation

eg = Heg (10)

-provided that the conditions below are satisfied

H = Fy — NFy3
K=Fy)—NF;1+HN an
I'=G, - NG,

The solution of (10) can be written as

ep(t) = P (t)es(0) (12)
where &y (t) = et is the transition matrix of H. Hence, if
we choose a matrix H exponentially stable, i.e. a matrix for
which there exist positive constants 1 and X such that

llef*]| < pe, vt >0 (13)
then

ep(t) = eflteg(0) — 0, t — oo (14)

Therefore, if we denote the estimated state-variable vector by
z, the following limiting behavior is achieved
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0]—>0,t-—>oo (15)
es |

r—&=P [
Note that by selecting a matrix H with such a property, the
linear system (7) that produces the estimate is stable itself.

Using the Jordan Normal Form of H, it can be shown [11]
that H is exponentially stable if and only if all its eigenvalues
have negative real parts, i.e. if Re(\;) < 0,¢ =1,...,n —
p. Moreover, the rate at which ||eft|| — 0 depends on the
magnitude of the largest eigenvalue A,,. The convergence
rate in (15) decreases with A,,.

The following theorem states that we can choose the
eigenvalues of matrix H so that, under the specified condi-
tions, the convergence rate in (15) is arbitrarily fast. The
proof is outlined in the Appendix.

Theorem: Suppose the time-invariant linear state equa-
tion (1) is observable' and rankC = p. Given any degree
n — p monic polynomial q()\) there exists gain H such that
the reduced-dimension observer defined by (7) has an error
state equation (10) with characteristic polynomial g(\).

In the next section, we explain how the described state-
variable estimation methodology can be used to render con-
currently testable linear analog circuits.

3. Observer-based concurrent error detection

The objective of concurrent error detection is to continu-
ously examine whether the output of the circuit under con-
sideration remains within a tolerance band around its nom-
inal value. Hence, we should choose an invariant property
that is highly correlated to the output of the circuit. Ideally,
[this property should be violated in case one or more circuit
specifications are failed. This implies that the property needs
to depend on all circuit parameters.

Based on the discussion of the previous section, the pro-
posed concurrent error detection methodology relies on ex-
amining the invariant difference § — y, where 4 is an esti-
mate of the output. Ideally, § — y = 0, yet in reality, due
to transistor mismatches and other non-idealities that are al-
ways present, this comparison cannot be made exact. Hence,
to compensate for process variations, the absolute difference
|§ — y| has to be compared to a threshold V5 > 0, in order to
realize a tolerance window within which the two signals are
deemed equal. This issue will be addressed later in section 4.

The circuit that produces the output estimate monitors
continuously the circuit input as well as a set of observable

! An n-dimensional time invariant system (1) is observable if and only if

C
CA

rank . =n
can

Other equivalent definitions may also be listed [10], for example one may
consider the eigenvalue test given in the Appendix.
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nodes internal to the circuit. Monitoring an internal node
should not affect the performance of the circuit. For exam-
ple, in an active linear analog circuit, the outputs of the oper-
ational amplifiers may be directly monitored without load-
ing the circuit, provided that the amplifier’s output stages
can supply and sink the necessary amount of current. Ac-
tually, even non-observable nodes may be monitored if an
additional buffer is utilized; however, the use of this voltage
test point structure depends on the hardware that can be po-
tentially saved, as compared to estimating these voltages.

In the following, we discuss issues regarding output esti-
mation, size of the estimation circuit, and reliability of the
proposed method.

3.1. Output estimation

An estimate of the output can be obtained as follows. If
the output is a state-variable itself, then the method discussed
earlier is directly applicable. The estimate vector, zg, will -
consist of the output as well as all the state-variables that
cannot be directly observed.

If the output is not a state-variable but rather a linear com-
bination of state-variables and inputs, i.e. it is of the form
Mz + Du, then it is sufficient to estimate just one state vari-
able that appears in the expression of the output. In case
all state variables that appear in the output expression are
observable, one has to be treated as non-observable and its
value has to be estimated by monitoring the rest of the state
variables. If more than one state variables that appear in the
output expression are non-observable, then all of these non-
observable state variables need to be estimated. The output
estimate can then be produced by substituting the actual state
variables by their estimated values in the output expression.

In case the circuit under test can be partitioned into a cas-
cade of stages that do not communicate through feedback,
special attention must be paid in order to ensure that all pa-
rameters are taken into account in the design of the estimator.
For example, consider a circuit with two cascaded stages. If
the output of the first stage is included in the set of observable
nodes, then the contribution of all other selected observable
nodes within the first stage will be nullified in the construc-
tion of the estimation circuit. Therefore, the output estimate
will only depend on the components of the last stage and any
information for the rest of the circuit will be lost. A remedy
for this is to avoid including the connection node between
two cascaded stages into the set of observable variables or to
apply the method separately for each stage.

In all cases described above, the output estimate can be re-
alized as an active linear circuit which receives as inputs the
inputs of the circuit under test and a subset of the observable
internal nodes. The above propositions guarantee that the
resulting estimation circuit depends implicitly on all param-
eters of the original circuit through the matrix coefficients in
(7), provided that the elements of the real matrix N are all



non-zero. Moreover, from the conditions that are listed in
(11), it is evident that the sensitivity of the estimate can be
set by choosing an appropriate matrix N, always keeping in
mind that any selection must necessarily lead to an exponen-
tially stable matrix H.

3.2. Estimation circuit size

The number of nodes that need to be observed equals the
largest degree of the denominators of the transfers functions
w/u;, where u; are the inputs of the observer (7). This is
a very useful result since the size of the estimation circuit
can be deduced by simple observation of the original circuit.
It also indicates the potential of the proposed method; usu-
ally, observable nodes exist in the internal of the stages and
hence the order of the estimation circuit will be smaller than
that of a duplicate of the circuit under test. Smaller order
generally implies smaller area overhead and less complexity,
although area is also related to the placement of the compo-
nents on the chip. Moreover, in the worst case where none of
the internal nodes is observable and only the input is avail-
able, the size will equal that of a duplicate. This means that,
in the worst case, the proposed strategy leads to the duplica-
tion method. In section 5, we present two examples where
it is sufficient to estimate only one state-variable and hence
the resulting estimation circuit is very simple and straightfor-
ward to implement. An example for which our method does
not have any advantages over duplication is the Sallen-Key
biquad [12], where all internal nodes are non-observable. It
may be possible to set the coefficient matrices of the linear
system that produces the estimate in such a way that its order
is less than n — p but special attention must be paid in order
to incorporate all parameters into the invariant property.

The reason this method has the potential to result in a cir-
cuit of size less than the original one is that the output is esti-
mated by means of present information that the circuit nodes
possess. The estimate is delayed because of the lead time re-
quired to compute the initial value of the state-variable vector
and the current state from this information. However, from
the time the estimate converges to the actual output value
and onwards, it follows accurately any change occurring at
the output. Hence, the penalty we pay is the convergence
time. As discussed in the previous section, the linear ob-
server can be chosen so as to achieve arbitrarily fast conver-
gence. Therefore, practically, the initial convergence interval
does not constitute a drawback.

3.3. Reliability of the method

The estimation circuit along with the analog checker
needed to examine continuously the difference § — y con-
stitute the error detection circuit. We emphasize that this
scheme does not assume any specific fault model. It is rather
defined at an abstract level in terms of the correlation of

the output and its estimate. Since the values of the compo-
nents of the estimation circuit depend on the whole parameter
space of the original circuit, it is expected that any devia-
tion from the nominal behavior will trigger the checker. The
threshold of the checker sets the limits of acceptable behav-
ior. Hence, the error detection circuit is code-disjoint [13],
i.e. input values are mapped to the output code space if and
only if they belong to the input code space. Equivalently, the
observer has the capability to indicate its own faults, since a
fault within it will cause the estimate ¢ to deviate from the
correct output y. Therefore, the observer is also self-testing.
In order to ensure the self-testing property for the entire error
detection circuit we need to ensure that the analog checker is
self-testing. This means that, after the occurrence of a fault
within the checker, the checker must either indicate it or re-
tain its ability to classify the input signals correctly.

4. Analog checker considerations

A checker is required to compare the two signals, § and
y. Comparators are extensively used in analog design [14],
with their most important application occurring in analog-
to-digital conversion. The sign of their output voltage indi-
cates which of the input signals is larger. For test purposes,
however, one is rather interested in the correlation between
the two encoded signals. As an example, consider two sig-
nals that are expected to be identical in the absence of faults.
Since deviations from nominal values attributable to process
variations are certain to exist, what matters is the difference
between the two signals. Therefore, instead of performing an
exact comparison, checkers should take into account a toler-
ance window within which two signals are deemed equal.

In our particular case, the checker needs to examine
whether the inequality |§ — y| < Vs holds. Vj is the assigned
threshold, which is chosen so that the number of false alarms,
both positive and negative, is minimized. Its optimal value
can be found on the basis of a worst-case tolerance analysis,
which aims to identify the worst case parameter sets.

Algorithms proposed for worst-case analysis fall into
three major categories. Monte Carlo analysis usually un-
derestimates the upper and lower bound of the output re-
sponse since a finite number of simulations is, theoretically,
never sufficient. Hence, the calculated response is enclosed
in the actual response space. Interval analysis leads to
overestimated results since the dependency amongst interval
operands causes intractable interval expansion. In this case,
the calculated response encloses the actual response space.
Vertex analysis assumes that the response is monotonic to
changes in any parameter and at any point in the parameter
space. Therefore, the worst case parameter sets are located
at the vertices of the parameter space and the response space
can be calculated by taking the union of circuit simulation re-
sults at all possible vertices of the parameter space. In [15], a
method is described which uses sensitivity bands to identify
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the parameters that satisfy monotonicity over the parameter
space and substitute them with their corner values, in order
to generate an uncertainty-reduced simulation problem. It is
shown that the derived bounds are enclosed in the respective
bounds that result from Monte Carlo and Interval analysis.

Worst-case analysis is applied to find upper and lower
bound for the gain (§ — y)/u. Hence, the resulting thresh-
old is of the form V5 = e,(w)u, that is, it should depend
on both frequency and input stimulus magnitude. An analog
checker for fully differential circuits that has the ability to ad-
just its threshold to the input stimuli magnitude is presented
in [16]. The idea can be easily extended for the case of dupli-
cate signals. The proposed checker implements a threshold
Vs = e,|u|. While its dependency on frequency is not con-
sistent, this particular checker is the best known solution to
date. The constant e, can be chosen to achieve the high-
est possible accuracy in the bandwidth of interest. Accurate
threshold assignment is a common problem among existing
analog test solutions [17]. Essentially, the probability of false
alarms can be minimized but cannot be eliminated.

5. Examples

In this section, we demonstrate the various points of the
developed concurrent error detection methodology on two
example filters. In both cases, the derived estimation circuit
is very simple in comparison to a duplicate of the circuit un-
der consideration. In error-free operation, the estimate con-
verges exponentially to the output value for all input signals
and for all frequencies. Since the input code space is infinite,
we illustrate this convergence through simulation for an ar-
bitrarily chosen input. In the first example, the output of the
circuit is not a state variable, while in the second example
it is. In either case, a single state variable needs to be esti-
mated. Hence, H reduces to a scalar. In order to illustrate the
impact of H on the rate of convergence, we use two largely
different values for the two circuits. _

‘We note that in case the initial condition of the error differ-
ential equation (10) is zero, i.e. ep(t = 0) = 0, the estimate
converges to the output value immediately. In order to sim-
ulate a non-zero initial condition of the differential equation
and demonstrate the exponential reduction of Vs ~ Vyys, We
insert switches at the input of thé estimation circuit, which
we turn on at an arbitrarily chosen time. ‘

We also demonstrate that the estimate fails to converge
to the output value in the presence of faults in the circuit
components. While we only present simulations for a single
fault for each circuit, we note that we simulated all possible
catastrophic faults and a large subset of the infinite possible
parametric faults and convergence failed in all cases where
the output was erroneous. Qualitatively, this observation can
be explained as follows. If the output is erroneous, then at
least one of the monitored state variables will be erroneous
as well. Since the estimator is inherently different than the
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circuit under test, we expect that this voltage inconsistency
will affect the two responses differently. Therefore, there is a
reasonably accurate mapping between voltage specifications
and the test output.

We emphasize that this method does not rely on a pre-
scribed fault model but rather detects any malfunction that
leads to an unacceptably large discrepancy between the es-
timate and the output of the circuit. The threshold of the
analog checker that detects this discrepancy depends on the
specific application and data collected from the manufac-
turing process. Issues regarding analog checker design as
well as the selection of an appropriate threshold were an-
alyzed in section 4. This topic is not discussed further
herein. The interested reader may consult the existing lit-
erature [2, 16, 18, 19].

5.1. Highpass filter

A highpass filter implemented by a summing four-
amplifier biquad is shown in Fig. 1. This circuit has three
state-variables. The output itself is not a state-variable and
can be expressed as V,y = —z1 + 1029 — V;,,. All state-
variables are observable. The problem reduces to estimation
of 1 by monitoring zo, z3 and V;,,. Equivalently, we could
have chosen to estimate 2 by monitoring z; and noting that
T2 = —x3. The state-variable equation for the circuit can be
formulated as

] =100 1000 ] [ =100
x‘[—looo 0 ]““’[ 0 ]Vi"

where © = [ 7 To ]T. The reduced-size state variable
vector is iy = [ 0 1 ] z. Letting P, = [ 1 0 ]

[ o -1000 T o
F= [ 1000 —100 } ¢= [ —100]
Hence, the neces’sziry conditions for the output of the ob-
server (7) to ’expo‘nentially converge to x, are

H = —100 + 1000N < 0
K = 1000+ HN
T'=-100

Choosing N = —0.1, yields H = —200 and K = 1020.
Taking the Laplace transform of (7), solving for &; and sub-
stituting in the expression of the filter output, we obtain the
following estimate

100
s + 200

~ - 1020

= —————x9 — 10.5
out s+ 200-732 T3 + [

1] v

This function can be implemented with the active circuit
shown in Fig. 2. In Fig. 3 we illustrate the exponential
convergence for the fault-free case. The estimation circuit is
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Figure 1. Highpass filter.
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Figure 2. Estimation circuit for the highpass filter.
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Figure 3. Estimation converges in the fault-free case.
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Figure 4. Estimation fails to converge in the case of a faulty value of 0.12u for the capacitor C;.
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activated at t = 2ms so that e,(t = 0) # 0. The simulation
is repeated in the presence of a fault that increases the value
of capacitor C} by 20%. The result is shown in Fig. 4. Due
to this fault, the estimate never converges to the output.

5.2. Leapfrog lowpass filter

The second example is a leapfrog lowpass filter [12],
shown in Fig. 5. There are six state-variables one of
which is the output itself, V,,+ = x¢. Moreover, note that
o = —x1 — x4 and x5 = —xz4. Hence, if we choose
T = [ Ty T3 T4 g ]T, the state-variable equation is

L 1 1
ro; ~Ror O 0 e
. e 0 RC 0 0
TR0 — 00— [T o |
~ R ~RG
0 0 D 0
BCG,  RGh

where R = 10k, C, = 7.654n and Cy = 18.48n. We will
estimate V,,; by monitoring z1, 3, £4 and V;,,. Hence, the
reduced-size state variable vector is specified as

y:

OO
O = O

0 0
0 0 [z
10

Letting P, = [ 0.0 0 1 ], it turns out that P = I x4
and

1 1 1
RGh 1601 (1) 8 —gﬁ
F=| 82 _ 1 T _1 [G=| |
RCz 1 1]?02
0 0 RCy RCh 0

If we denote by N;, i = 1,2, 3, the elements of the 1 x 3 ma-
trix IV, the conditions for exponential convergence become

1 N3
H=-——+—2 <0
RC, T RC, ©
K:[ NaNy—Np Ny—Na 4 Ns(No+1) 1-Ny , Ni-Na ]
RCo RC, RCy RC, RC,
T = N
RC,

Hence, choosing N3 = 1, Ny = Ny = —1, we obtain

H=-765-10°
K=[0 0 10.822-10% ]
T = —13.065 - 10°

The estimate for the output is

13.065 - 103

TS5+ 7.653-103°° T 51 7.653-10°
—T1 — T3 — Is5

. . 10.822 - 103
Vout =T =

Vin
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The estimation circuit is shown in Fig. 6. Fig. 7 illus-
trates the convergence when all components have their nom-
inal values. Once again, we utilize switches which we turn
on at t = 2ms to impose random initial conditions. Since
the value of H is smaller in this example than in the previous
one, convergence is faster. Fig. 8 shows that the estimate
fails to converge when resistor R; takes the faulty value of
12k. Finally, Fig. 9 illustrates the respective responses in the
occurrence of a transient error. A short pulse is added to the
signal of a randomly selected node at around 4ms. The in-
variant difference |§j — y| becomes temporarily nonzero and
decreases exponentially to zero again.

6. Cvonclusion

We presented a new approach for concurrent error detec-
tion in linear analog circuits. In general, the proposed ap-
proach results in an error detection circuit that is smaller
than a duplicate of the original circuit. The size of the de-
rived error detection circuit is predictable by simple obser-
vation of the circuit under consideration and, furthermore,
decreases with the number of observable nodes. The invari-
ant property used for concurrent error detection reflects the
entire parameter space of the circuit and is monitored con-
tinuously. Additionally, response correctness information is
obtained at the operational speed for any input value and for
the entire frequency spectrum. Hence, concurrent detection
of both transient errors and permanent faults is ensured. The
various points of the developed scheme were demonstrated
through representative simulations.

Appendix

The proof is based on three well known results in linear
system theory [10, 20], which are presented in theorems A.1
through A.3. First, controllability is defined.

A n-dimensional time invariant linear system (1) is con-
trollable if and only if

rank| B AB .- A"'B | =n
Theorem A.l: For every n-dimensional controllable pair
(A, B) and each symmetric set of complex numbers A, there
exist a matrix L such that

spectrum (A+ BL) = A

Theorem A.2: A pair (C, A) is observable if and only if for
every complex scalar A the only complex n x 1 vector p that
satisfies

Ap=Ap, Cp=0

isp=0.
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Figure 5. Leapfrog lowpass filter.

Figure 6. Estimation circuit for the leapfrog lowpass filter.
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Figure 7. Estimation converges in the fault-free case.
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Figure 8. Estimation fails to converge in the case of a faulty vaiue of 12k for the resistor R;.
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Figure 9. Estimation diverges temporarily in the occurrence of a transient error.

The next theorem follows directly from theorem A.2.

Theorem A.3: A pair (C, A) is observable if and only if

rank ¢ —n‘
@ sI—-A |~

for every complex scalar s.

It is clear that this observability test criterion need only
be applied for those values of s that are eigenvalues of A.

Since H = Fyy — N Flg, we need to prove that

det]\] - (Foo ~ NFp2)l =q(3)  (16)

Equivalently, noticing that (Fay — NFy5)” = FL,—FLNT,
(16) becomes

det [\ — (F — FENT)] = q()) an

According to theorem A.1, it is adequate to show that the
pair (F, F{*’;) is controllable. However, we know that con-
trollability of (F%, Fh) is equivalent to observability of
(Fi2, Fa2). Hence, it is adequate to show that the (n — p)-
dimensional linear state equation '

T = FQQ.’L‘

y = Figz (18)

is observable. Supposing the contrary, a contradiction is ob-
tain as follows. If (18) is not observable, then by theorem
A2 there exists a nonzero (n — p) x 1 vector, ¢, and a scalar,
7, such that

Foo( =n¢, F12¢ =0 (19)
Therefore,
o P Opx1 ] [ Fiy¢ ] [ Opx1 ]
- = = 20
[F21 FzzH ¢ Fol | =7 ¢ | @O
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and
[ T 0][0”51}=0 @1

The above two equations can be written in matrix form

I, 0 Opx1 | _
LaE M ] @
Hence,
rank[nf_g.,:l<n (23)

and by theorem A.3, the linear state equation (6) is not ob-
servable. But (6) is related to (1) by a state variable change
and thus a contradiction to the observability hypothesis for
(1) is obtained. This completes the proof.
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