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Abstract—To combat the effects of process variation in mod-
ern, high-performance integrated Circuits (ICs), various post-
manufacturing calibrations are performed. These calibrations
often aim to bring the device within its specification limits and
make sure it abides with current technology standards. Moreover,
with the increasing popularity of mobile devices that depend on
finite energy sources, energy consumption has introduced another
constraint. As a result, post-silicon calibration is often performed
in order to identify the optimal operating voltage (Vmin) of a given
Integrated Circuit. This calibration is a very time-consuming
process that requires the device to be tested in a big range of
voltage inputs. In this paper, we propose a machine learning-
based methodology to reduce the cost of performing the Vmin
search, by identifying an optimal starting point (seed) for each
wafer.

Index Terms—post-silicon calibration, adaptive, test-cost re-
duction

I. INTRODUCTION

Recent advancements in semiconductor technology have
facilitated the industry to produce high-performance ICs at a
relatively low cost, suitable for the consumer market. However,
these advancements have also magnified the impact of process
variations and their ensued effects in reliability and yield.
Therefore, nowadays, post-silicon calibration plays a major
role in fine-tuning all the key performance parameters of a
fabricated device, thereby reducing the effects of process vari-
ation. One major pitfall of performing post-silicon calibration
is that it requires numerous test measurements and adjustments
that take up a significant chunk of the total test time. These
increased test times contribute to the manufacturing cost and
hinder the profit margins for new products.

Mainly due the popularization of mobile consumer devices
an increased concern for power consumption has been intro-
duced. These devices rely on finite energy sources thus their
battery life per charge plays a major factor to their market
success. Manufacturers, in order to address this need, while
continuing to push the envelope in performance, are forced to
employ post-silicon calibration techniques. A common such
technique for reducing the power consumption on certain
devices involves the identification of the minimum operat-
ing voltage Vmin and the corresponding subsequent tuning.
Each Device Under Test (DUT) is tested within a range of
allowed operating voltages, until the optimum voltage in terms
of power consumption voltage is identified. This calibration
process is often referred to as Vmin search and typically is
performed as shown in Figure 1.

The search must start from Vstart and then it proceeds
iteratively, depending on the type of search, until all test

patterns have been tested and the minimum acceptable voltage
is reached. For every test pattern iteration the DUT is tested
against the last known Vmin and if it passes it moves on to the
next pattern otherwise it triggers a Vmin search for the failing
pattern. This is repeated until the optimum Vmin is reached
and stored within the device. Depending on the number of test
pattern, the search type and the resolution with witch voltages
are tested when a Vmin search is triggered, the overall testing
time can increase significantly.

In this work we will propose a machine learning-based
approach that adapts the starting voltage of the Vmin search
per wafer according to its e-test signature. This would allow
for significant test time savings without affecting the yield and
with a minimal power consumption overhead.

II. RELATED WORK

Several researchers have suggested various post-production
calibration techniques that shed light on calibrating the per-
formance parameters to be well within the specification limits.
Process variations introduced during various stages of manu-
facturing (e.g., lithography, thermal treatments, etc.,) propose
a great challenge as the industry is moving towards smaller
nodes. Hence it becomes the responsibility of post-silicon cali-
bration phase to identify the optimum operating conditions by
altering the specification parameters within agreeable limits.
Both iterative and adaptive calibration methods have been
explored in recent times to help improve yield.

The approach in [7] speeds up the trim code search by using
machine learning based methodology to predict the binary trim
seed code for each wafer. The predicted trim seed code will
function as a starting point for the trimming algorithm. This
approach considers the median of trim codes of all dies as
an optimal starting point of the search. Post-silicon trimming
helps to center the key performance parameters that might have
shifted due to process variations. In [8], authors propose an
adaptive methodology to cut down trim time using machine
learning by effectively predicting the trim lengths of on-chip
laser trimmable resistors. This technique focuses on creating a
function based on the spatial coordinates of the die which are
used in expressing the length of the trim code as a function.

In [5] an on-chip self healing methodology using tuning
knobs has been proposed. This method relates pre-silicon
and post-silicon measurements for the purpose of post-silicon
calibration to overcome large scale process variations. A
midpoint alternate test method has been proposed as a cost
effective post-silicon calibration technique by using a single



Fig. 1: Typical Vmin Search

alternate test based model [4]. This method comes with a
cost model that compares midpoint alternate test methods
alongside other prominent calibration methods in order to
establish the effectiveness of the approach. Likewise, in order
to substantiate our goal of achieving minimum test cost, we
have also developed a cost function to include every step
involved in identifying the optimal operating voltage.

When we discuss the cases of post-silicon calibration, we
cannot ignore the importance of e-test measurements and their
role in understanding the impact of process variations on
the manufacturing process. e-tests are electrical measurements
extracted at select locations across the wafer by using Process
Control Monitors (PCMs) included on wafer scribe lines.In [2]
e-test measurements are used to forecast parametric yield to
aid in ramping up the production during fab to fab product mi-
gration. A regression function models the relationship between
e-test and probe test measurements. Similarly, [1] emphasizes
on capturing the wafer signature from e-test signature vector
which is modelled to predict the suitable test flow for a wafer.
On a per-lot basis, the e-test signature vector for each wafer
is used to build a model which will eventually predict and
dynamically adapt to a suitable test flow process.

Our goal in this paper is to predict the Vmin seed code using
dynamic and fast approach of letting the parameters of the
algorithm automatically adapt to the silicon being tested. The
key difference between the approaches mentioned in [8], [7]
and our approach is that an additional key constraint of power
consumption has been introduced. In order to achieve the
adaptive search algorithm, we exploit the e-test measurements
to identify the search parameters across the wafer without
compromising the yield and power consumption.A set of

statistical features extracted from e-test measurements and
their combinations have been used to predict the starting point
of the search.

III. PROPOSED METHODOLOGY

Our methodology aims at reducing the overall Vmin search
time without affecting the production yield. To achieve this,
without interfering with current test-floor logistics and pro-
cesses, we seek to adaptively alter the search parameter values
as a function of the silicon’s signature. In order to simplify
the adoption in production of the proposed methodology, we
focused on wafer-level adaptation instead of at die level which
would have introduced further complexity.

As in the studies mentioned in Section II, e-tests or Wafer
Acceptance Tests (WAT), produce a very characteristic signa-
ture for each wafer under test, suitable for wafer-level adaptive
methods. Another benefit of utilizing the e-tests is since all
calibration steps are performed in a later insertion, there is
sufficient time for any adaptive decisions to be made without
stalling the production line.

Figure 2 shows an overview of the flow for the proposed
approach, where there are two main phases, the training and
production phase. During the training phase, a set of wafers is
used for the extraction of the model features from the e-tests
and the target voltages. The devices from these early wafers,
have been calibrated using current practices. Once the feature
extraction step is completed, these vectors are then used to
train a number of regression models, corresponding to each
target parameter.



Fig. 2: Proposed Approach

During the production phase of the proposed methodology,
the model will be used to predict the target voltages based on
the measurements collected in e-test insertion of each wafer.
These voltages will then be used during the Vmin calibration
for each device on the same wafer.

A. Feature Extraction

The first step in both phases of the proposed methodology
is feature extraction, where the goal is to generate the features
with which we will train our model. As mentioned above, these
features are generated using the e-test measurements for each
particular wafer. To compact the feature vector length and suf-
ficiently represent the complete wafer, the e-test measurements
across all wafer sites are aggregated using statistics. To extract
the central tendency, dispersion and skewness of each e-test
measurement the mean, variance and skewness statistics from
all e-test sites are computed. This feature vector serves as a
signature of the effects process variations had in the production
of each wafer.

During the training phase of the regression model the target
voltage values also need to be generated according to the Vmin
calibration that was performed for each die in the early wafers
that are used for training. The selection of the target value
affects the performance of the proposed approach both in terms
of savings as well as power consumption overhead.

For linear search we predicted the Vstart of the search
process. If a device fails at Vstart, the search will begin from
the highest possible voltage and proceed downwards until the
device passes. If the device fails at a specific step down voltage
value, then we identify the voltage value at the previous step
as the Vmin.

B. Vstart Selection

For the linear search Figure 3 shows how test time and
power consumption is affected by predicting the various pa-
rameters in relation to the Vmin. As shown, for a given die in a
wafer, if the predicted Vstart is below the actual Vmin the search
is the same, starting from the Vhigh and decrease. The reason
for this is that the resulting Vmin would remain the same, thus
no power consumption overhead and it will take the same
number of steps. On the other hand, when the predicted Vstart
is over the actual Vmin the search will return the provided Vstart
at a cost of one step, since that will be a passing voltage and
the Vmin search will not get triggered. The difference between
the actual Vmin and the resulting sub-optimal is translated to
power consumption overhead. As shown, power consumption
overhead and test time savings of the proposed method are
directly related to each other as well as to the selection of the
Vstart.

C. Modeling: Multiple Adaptive Regression Splines

One of the key component of building the model to predict
the Vstart of the search algorithm is the implementation of
Multivariate Adaptive Regression Splines (MARS) algorithm
[3]. MARS algorithm helps the methodology by modelling the
wafer level search seed code as a function of e-test signature
vector. The MARS model is a powerful and flexible regression
model that helps in modelling the relationships between using
few variables in high dimensional datasets. It takes advantage
of additive and interactive relationships between variables
thereby resulting in using fewer variables to represent a high
dimensional dataset. Due to the aforementioned advantages,
MARS algorithm has been used in many test cost reduction
approaches [1] [6].



Fig. 3: Wafer-level Vstart Selection

IV. EXPECTED RESULTS

An industrial dataset consisting of high performance devices
was provided by Texas Instruments Inc. The devices provided
in the dataset were calibrated based on the current method-
ology. The devices consisted of their e-test measurements
and their respective optimal operating voltages (Vmin). The
industrial dataset was split into training and testing sets. From
the available e-test measurements, the statistical measurements
mean, variance and skew were extracted to train the machine
learning model during the training phase. The effectiveness
of such model was evaluated by performing a leave-one-out
experiment for all wafers in the dataset.

From the preliminary results, it is evident that the proposed
adaptive methodology of identifying the starting point (Vstart)
of the Vmin search shows considerable improvement with
respect to test time savings. We were able to see approximately
80% test time savings with only a 5% power overhead. This
is a significant improvement when compared to the current
approach setting the default high voltage as the starting point
of the search. Based on the preliminary results conducted
on the linear search technique, there are ways that we can
extend this approach to be applied for other popular search
algorithms. It might provide us with more test time savings
with a minimal power consumption overhead.

V. CONCLUSION

We have analyzed a machine learning based intelligent
approach to predict the starting point of the optimum voltage
search. This approach is capable of being combined with
several other post-silicon calibration techniques. By applying
this technique, increase in test time and cost in terms of the
Automatic Test Equipment (ATE) usage can be minimized.
This approach once again proves that the e-test measurements
contain considerable amount of key information that can be
used to improve the yield of devices and reduce manufacturing
costs at the same time.
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