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Soft Error Mitigation Through Selective Addition of
Functionally Redundant Wires

Sobeeh Almukhaizim, Member, IEEE, and Yiorgos Makris, Member, IEEE

Abstract—We introduce a logic-level soft error mitigation
methodology for combinational circuits. The proposed method
exploits the existence of logic implications in a design, and is based
on selective addition of pertinent functionally redundant wires
to the circuit. We demonstrate that the addition of functionally
redundant wires reduces the probability that a Single-Event Tran-
sient (SET) error will reach a primary output, and, by extension,
the Soft Error Rate (SER) of the circuit. We discuss three methods
for identifying candidate functionally redundant wires, and we
outline the necessary conditions for adding them to the circuit.
We then present an algorithm that assesses the SET sensitization
probability reduction achieved by candidate functionally redun-
dant wires, and selects an appropriate subset that, when added to
the design, minimizes its SER. Experimental results on ISCAS’89
benchmark circuits demonstrate that the proposed soft error
mitigation methodology yields a significant SER reduction at the
expense of commensurate hardware, power, and delay overhead.

Index Terms—Logic implications, single-event transient, soft
error rate, soft error sensitization probability.

ACRONYM!
SER  Soft Error Rate
SET Single-Event Transient
B.J.  Backward Justification
D.I.  Direct Implications
LL Indirect Implications
NOTATION
G1...Gyo  logic gates
U, v logic values
Wy source wire of an implication
Wy target wire of an implication
a,b,..., h  circuit inputs
N number of SET
M number of random input vectors
k; number of implications that mask SET ¢
Rser rate of occurrence of a SET at a gate
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I'The singular and plural of an acronym are always spelled the same.

PSB”LS

Platch

probability of a SET reaching an output

probability that a SET is latched in a storage
element

1. INTRODUCTION

HEN high-energy neutrons or alpha particles strike a
Wsensitive region in a semiconductor, they generate a
Single-Event Transient (SET), in the form of an unexpected
current pulse of a short duration. Under certain circumstances,
the latter may be misinterpreted by the circuit as a valid signal,
and result in an incorrect state and/or output, thus producing
a soft error. Such soft errors, which only distort the data
processed by the circuit but make no damage to the hardware
itself, are emerging as a serious threat to the reliable operation
of logic circuits. Historically, soft errors have been of great
concern in memories, and various mitigation solutions have
been developed [1]. Memories occupy a large area of silicon,
and comprise storage elements that are much more susceptible
to particle strikes than combinational logic [2], where SET
are frequently masked before reaching an output or a storage
element [3]. However, technological trends such as faster
clock rates, smaller device sizes, lower supply voltages, and
shallower logic depths are drastically reducing SET masking,
and significantly increasing the occurrence of soft errors in
combinational logic [1]. Therefore, mitigation methods to
reduce the Soft Error Rate (SER) in combinational logic are
vital to the reliable operation of integrated circuits.

To this end, this paper contributes a soft error mitigation
method which is based on the selective addition of functionally
redundant wires to the combinational logic of a circuit. The
proposed method builds upon the concept of logic implications.
These implications reflect fine-grained invariant relations be-
tween logic-level signals, and reveal opportunities for adding
functionally redundant wires to the circuit, in order to reduce
its susceptibility to soft errors. The fundamental mechanism
through which soft errors are mitigated is quite simple: if
a SET distorts a signal, then the existence of appropriately
selected functionally redundant wires can prevent the distorted
signal from propagating to an output or a storage element, and
resulting in a soft error. As a side effect, however, the addition
of functionally redundant wires not only incurs hardware,
power, and delay overhead, but also introduces new locations
wherein SET may occur. Therefore, a systematic mechanism
for identifying & judiciously adding functionally redundant
wires to the circuit is required. For this purpose, we employ
three distinct methods for identifying logic implications in
a combinational circuit, and we discuss the construction of

0018-9529/$25.00 © 2008 IEEE

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:47 from IEEE Xplore. Restrictions apply.



24

functionally redundant wires to realize these implications.
Subsequently, we propose a selection algorithm which assesses
the benefits of candidate functionally redundant wires, and
selects a cost-effective subset among them to reduce the SER
of the circuit.

Unlike previous soft error mitigation methods, which operate
at the circuit level, and are only applicable once the circuit has
been mapped to a specific technology, the uniqueness of the pro-
posed method is that it operates at the logic level, and can there-
fore be applied much earlier in the design cycle in a technology-
independent fashion. Moreover, the mechanisms through which
soft errors are mitigated at the logic level are orthogonal to
those at the circuit level; hence, the logic-level method proposed
herein not only provides a better starting point, but may also be
applied synergistically with the current state of the art in cir-
cuit-level soft error mitigation.

The remainder of the paper is organized as follows. In
Section II, we review related work in soft error mitigation for
combinational logic. In Section III, we discuss how the addition
of a functionally redundant wire can increase the probability
of masking SET in a circuit. Then, in Section IV, we describe
three methods for identifying functionally redundant wires
for potential addition to the circuit. In Section V, we examine
the conditions by which such an addition should abide. In
Section VI, we present an algorithm for selecting & adding
a cost-effective subset of functionally redundant wires to the
circuit to reduce its SER. Experimental results on ISCAS’89
benchmark circuits are provided in Section VII, demonstrating
that the proposed algorithm achieves significant reduction in
the SER of a circuit, commensurate with the incurred hardware,
power, and delay overhead.

II. PRIOR WORK

The SER of a combinational circuit is proportional to three
factors [1], [4]: the rate of SET occurrence at a logic gate
(Rsger), the probability of a SET arriving at a storage element
during its latching window (P4¢cr), and the probability of a
SET propagating to an output or a storage element through
a sensitized path (Psepns). To reduce the SER of a circuit,
previous soft error mitigation methods have focused on the first
two factors.

Soft error mitigation via RggT reduction is based on circuit-
level design modifications, wherein individual transistor charac-
teristics are perturbed to reduce the sensitivity of logic gates to
SET. Specifically, such methods resize the (W)idth/(L)ength ra-
tios of the transistors in a select set of gates to increase their im-
munity to SET; and, by extension, reduce Rsgr, and the SER
of the circuit. SER estimation & assessment of gate suscepti-
bility to soft errors is performed either through fault injection &
simulation, wherein the SET masking factors are evaluated sep-
arately [4]-[6]; or through symbolic representation, wherein all
SET masking factors are evaluated in a unified approach [7]-[9].
In either way, gate resizing is performed for the most susceptible
logic gates, i.e. the ones that contribute the most to the SER of
the design [10]-[13].

Soft error mitigation via Py,t.n reduction is based on re-
designing the storage elements of the circuit to prevent latching
of SET occurring in flip-flops [14], [15], combinational logic
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[16]-[18], or both [19]-[21]. Specifically, such methods take
advantage of the temporary nature of SET, and tolerate them
via fine-grained time redundancy [16]-[18]. In this case, the
flip-flop inputs are sampled multiple times within the slack time
available for each output of the circuit; and a majority voter se-
lects the winner of the sampled values, which is subsequently
stored in each flip-flop. This reduces the SET latching window;
and, by extension, the Pj,¢.r, and the SER of the circuit. In an
effort to reduce the incurred cost, several methods that utilize ex-
isting test & debug system resources to implement time redun-
dancy-based soft error mitigation have been recently proposed
[20], [21].

In contrast to these circuit-level solutions, the method pro-
posed herein mitigates soft errors at the logic level via Pgeng
reduction, which offers several advantages. First, the proposed
method is technology-independent; thus, it enables design mod-
ifications for SER reduction that are equally effective, indepen-
dent of the technology to which the circuit will be eventually
mapped. Second, it allows SER to be considered as a design
objective earlier in the design cycle, when only the logic-level
netlist is available. Third, it targets an SER contributing factor
that is not addressed by the previously proposed circuit-level
methods, namely Pi.,s; therefore, it naturally complements,
and can be combined with soft error mitigation methods that
aim at reducing Rsgr, and Pigcp,.

III. BASIC PRINCIPLE

The proposed method is based on the existence of implica-
tions, i.e. fine-grained invariant relations between pairs of wires
in a circuit. An implication from a source wire to a target wire
indicates that a value assignment at the source wire forces a
consistent value assignment at the target wire. Such forced re-
lations provide a source of invariance that can be used to mask
SET. Suppose that a SET distorts the target wire by changing
the value of a gate on the implication path between the source
wire, and the target wire. Then, if the source wire is added as
an input to the gates driven by the erroneous target wire, the
effect of the distorted value can be masked, and the output of
the circuit will still be correct. Addition of such wires, however,
is possible only if the function realized is preserved, i.e. if the
added wire is functionally redundant.

Fig. 1 illustrates the idea of utilizing logic implications to
add redundant wires to the circuit. Let (Ws,u) = (Wy,v) de-
note an implication, i.e. the fact that a value of u on the source
wire W will cause a value of v on the target wire W;, where
u,v € {0,1}. In the circuit of Fig. 1, for example, one such
implication would be (e, 1) = (Gs,0), because if e = 1, then
G3 = 1, and Gg = 0. Consider the case where ¢ = 1, and
G¢ = G7 = 0. Giventhate = 1, and (e,1) = (Gg,0), we
expect that Gg = 0. If a SET flips the value of any gate on
the implication path (comprising G35, and G, in our case), then
the output of G'g will obtain an erroneous value of 1. If h = 1,
this error will propagate through G'1( to O;. However, if we add
the functionally redundant dotted wire & inverter from e to G'1
(realizing the implication (e, 1) = (Gg,0)), then the SET will
be masked at G'1¢ before reaching O;. The addition of the re-
dundant wire introduces a new location where SET may appear,
and propagate to the output. This is the case if a SET affects the
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Fig. 1. Example circuit.

added inverter while e = 0, and Gg = Gg9 = 1. If the overall
sensitization probability, however, of all the potential SET in the
circuit is reduced, then the corresponding redundant wire effec-
tively reduces the SER. In other words, the reduction to the prob-
ability of sensitization, when a redundant wire is added, repre-
sents how critical the redundant wire is to the reliability of the
system as it measures the improvement in its reliability against
soft errors.

Essentially, a SET that distorts the value of a gate on an im-
plication path can be masked by adding a wire from the source
of the implication to the gates driven by the target wire. When
such a wire is added to the logic circuit, the SER of the cir-
cuit is reduced, and therefore the operation of the circuit in the
presence of SET is more reliable. To develop this basic prin-
ciple into a soft error mitigation methodology, however, the fol-
lowing three key questions need to be answered: i) How do
we identify candidate functionally redundant wires in a circuit?
ii) Under what conditions can these wires be added to the cir-
cuit? iii) How do we select a cost-effective subset among the
possibly large number of candidate wires?

IV. IDENTIFICATION OF CANDIDATE REDUNDANT WIRES

In this section, we discuss how to find candidate redundant
wires that can be added to a logic circuit to mask a partic-
ular SET. Candidate functionally redundant wires are identified
when there exists an implication (W, u) = (W, v). Given
a specific target wire & value pair, (W;, u), several methods
can be used to find implicating source wires & values, (W, u).
Three such methods, varying in computational complexity & ef-
fectiveness, are discussed in the following subsections.

A. Backward Justification

Backward justification [22] aims at identifying implications
(Ws,u) = (W, v) with a source wire Wy in the cone of logic
driving the target wire W;. This is done by first setting W, to v.
Then, an attempt is made to justify the value assignment of the
inputs of the gate driving W;, and every other gate in its logic
cone, based on the connectivity of the circuit. Justification of
gates in the logic cone driving W, is feasible if there exists a
single possible value for the unjustified gates. Once backward
justification is completed, a wire W in the cone of logic driving
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Fig. 2. Identification of implications using backward justification.

W, may be assigned a value, say w, that is represented using the
logic implication

(Wi, 0) = (W, ). (1)
Or equivalently, by taking the contrapositive,
(W87u) = (Wt,?}), (2)

which represents the implication of W on W,.

All wires justified through the backward justification proce-
dure constitute a possible source point for a functionally redun-
dant wire. In this case, the complexity of identifying the impli-
cations is low as it only requires a single pass from the target
wire to the primary inputs.

As an example, consider the circuit of Fig. 2; and assume
that we want to identify source wires, and values that implicate
(Gs,0). The output of G is set to 1, and its inputs, G'3, Gg, and
G, are justified to 0 because G's is a NOR gate. Next, the output
of G5 is set to 0, and its inputs, d, and e, are both justified to 0.
Therefore, (Gs, 1) = ((d,0), (e, 0),(Gs,0),(Gs,0), (G7,0)),
which is equivalent to the following implications, summarized
in the fourth column of Table I: (d,1) = (Gs,0),(e,1) =
(G870>7 <G37 ]-) = (GS*, 0)7(G67 ]-) = (GS*,O)’ and <G77 1) =
(Gs,0). Under certain conditions discussed in Section V, the
source wire of any of these implications can be connected as an
additional input to gates driven by the target wire Gs (G'1p in
this case).

B. Direct Implications

Direct implications are identified by simply evaluating a gate
with a given combination of value assignments at its inputs &
output, and propagating the signal values according to the con-
nectivity of the circuit. The justification process while finding
direct implications is similar to the justification process while
performing backward justification. In both cases, justification
is feasible if there exists a single possible value for an unjusti-
fied gate. However, direct implications are implications not only
from the cone of logic driving the target wire but also from the
rest of the circuit. To find all direct implications in a circuit,
backward justification, and forward justification are performed
iteratively until every unjustified gate is either justified, or there
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TABLE I
IMPLICATIONS IDENTIFIED FOR Gg = 0 IN THE CIRCUIT OF FIG. 2 USING
BACKWARD JUSTIFICATION (B.J.), DIRECT IMPLICATION (D.I.), AND
INDIRECT IMPLICATION (I.I.)

Source | Implication | Inverted || B.J. | D.L | L L
Gg 1=0 Yes N4 VA Vv
Gs 1=0 Yes v/ vV VA

d 1=0 Yes \/ N4 N4
e 1=0 Yes V4 V4 v/
G 1=0 Yes V4 VA V4
h 0= 0 No - v |V
Gy 0=0 No VA VA
[€H 1=0 Yes - vV vV
Gy 0=0 No - IV VA
G1o 0=0 No - N V4
b 1=0 Yes - - VA

exist more than one possible justification for it. In every iter-
ation, all unjustified gates that have a new assignment to their
inputs or output are evaluated for further possible justification.
A well-known example of direct implications is the implication
procedure of FANZ [23].

As an example, consider again the circuit of Fig. 2. After
backward justification is performed with the output of Gg set
to 1, we find that d, e, G35, G, and G7 are all justified to 0.
At this point, backward justification terminates because there
are no more gates that can be justified. However, forward jus-
tification can be performed, yielding G4, = 1, because ¢ = 0.
Thus, a new assignment is made to the input of G'7, which is
now added to the list of unjustified gates. In the next iteration,
backward justification is performed on G7, yielding G5 = 0,
because G; = 0, and G4 = 1. In addition, h = 1 because
G5 = 0. Finally, forward justification, using the assignment of
h =1, yields Gg = 1, and G19 = 1; and the direct implication
identification procedure terminates. Hence, 5 additional impli-
cations are identified for Gg = 0, as shown in the fifth column
of Table I. This results in more candidate wires for addition, at
the cost of multiple backward, and forward justification passes.

C. Indirect Implications

The direct implication identification procedure covers the
straightforward case where there is only a single possible value
that justifies an unjustified gate. A gate is considered unjustified
if the current assignments of its inputs do not justify the output
value of the gate. For example, an AND gate that has an output
value of 0 with none of its inputs assigned a value of O is an
unjustified gate. In this case, there exist multiple possible input
value combinations for justifying the gate. As a result, the
direct implication identification procedure will stop. However,
if all justifications of the unjustified gate yield a common
implication, then this implication holds true regardless of the
actual justification. This type of implication is called an indirect
implication.

Several methods have been proposed in the literature for
identification of indirect implications, which is computationally
much harder than identification of only direct implications. The
ATPG method presented in [24] is able to derive a few indirect
implications in addition to direct implications. The main idea
is to identify the implications through Learning, which was

2FAN is a fanout-oriented test pattern generation algorithm.
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first introduced in [24], [25], and further developed in [26].
Learning is defined in [27] to mean the temporary injection of
logic values at certain signals in the circuit, in order to examine
their logical consequences. Techniques such as Extended
Backward Learning [28], and Recursive Learning [27] have
also been proposed to identify more implications in a logic
circuit. The implications obtained through Extended Backward
Learning are a strict subset of the implications obtained using
Recursive Learning, because of the generalized unjustified gate
definition used in [27]. In general, Recursive Learning [27]
with unlimited recursion depth is the most powerful method,
because it is able to identify all direct, and indirect implications
for a given target wire, and value assignment. However, its time
complexity is exponential in the recursion depth. Nevertheless,
experiments from [29] indicate that a small depth is usually
sufficient to identify most of the implications that exist in a
realistic circuit.

As an example of indirect implications, consider G in the
circuit of Fig. 2. Given a value assignment of 0 at G, back-
ward justification is unable to identify an implication because
either G; = 0, or G2 = 0 constitute a possible justification
for Gg = 0. Therefore, neither backward justification nor the
direct implication identification procedure are able to identify
additional implications. However, a closer examination reveals
that b = 0 regardless of whether G; = 0 or G2 = 0. In this
case, the additional implication (b,1) = (Gg,0) is an indirect
implication that can only be found using a method that identifies
common implications in all the justification scenarios, such as
Recursive Learning.

The implications found by the indirect implication identifica-
tion procedure for Gg = 0 are summarized in the sixth column
of Table I, and compared to the implications found by the pre-
vious two methods. Backward justification (B.J.) identifies five
implications, direct implications (D.I.) identifies an additional
five, and indirect implications (I.I.) identifies one additional im-
plication. This example indicates that the indirect implication
identification procedure is able to find more implications in the
circuit than backward justification, and the direct implication
identification procedure. However, the benefit of indirect impli-
cations seems marginal because the direct implication identi-
fication procedure finds almost all implications of Gg = 0 in
the circuit. To disperse this possibly misleading observation, we
provide a second example where the direct implication identifi-
cation procedure fails to identify any implications in the circuit,
while the indirect implication identification procedure identifies
all relevant implications.

Consider the circuit of Fig. 3, which is a modified version
of the circuit of Fig. 1, where b is replaced with G, and the
inversion is removed from Gg then added to GGg. Assume that
we would like to identify source wires that implicate G = 0.
Therefore, we first assign 1 to G, and perform backward justifi-
cation. In this case, backward justification fails to justify the in-
puts to Gg, and no implications are identified. Next, we perform
forward justification, which also fails to identify any implica-
tions. Therefore, both backward justification, and the direct im-
plication identification procedure both fail to identify any impli-
cations. However, further analysis of the structure in the shaded
area identifies the indirect implication (Gg,1) = (Gs,0). As
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Fig. 3. Modified example circuit.

TABLE II
IMPLICATIONS IDENTIFIED FOR GG¢ = 0 IN THE CIRCUIT OF FIG. 3 USING
BACKWARD JUSTIFICATION (B.J.), DIRECT IMPLICATION (D.I.), AND
INDIRECT IMPLICATION (I.1.)

Source | Implication | Inverted B.J D. I L L
Gs 1=0 Yes - - Vv
G3 1=0 Yes - - Vv

d 1=0 Yes - - Vv
e 1=0 Yes - - Vv
Gy 1=0 Yes - - V4
Gy 0=0 No - - VA
G5 1=0 Yes - - V4
h 0=0 No - - v
Go 0=0 No - - v
Gho 0=0 No - - v

a result, the procedure continues with justification of Gg = 0,
which yields numerous other implications, as shown in Table II.

Identifying only direct implications seems to be a minor
problem by itself, as demonstrated through the example in
Fig. 2. However, the missed indirect implications often pre-
clude many other implications from being found, as illustrated
through the example in Fig. 3. Experiments from [27] indicate
that this is a frequent phenomenon in logic circuits, and many
possible implications will be missed if indirect implications are
not identified.

V. CONDITIONS FOR ADDING REDUNDANT WIRES

In the previous section, we illustrated how to identify candi-
date redundant wires for a specific logic implication in the cir-
cuit. Thus, SET on the implication path can be masked by con-
necting the source of the implication as an additional input to
the gates driven by the target of the implication. The addition of
wires, however, should preserve the functionality of the circuit,
i.e. the wires should be functionally redundant. An implication
from source W to target W; does not mean that W; is equiv-
alent to W,. Therefore, in order to connect a wire originating
from W to a gate driven by W;, the following two conditions
should hold true.

Condition 1: A wire can only be added to a logic gate if the
output of the gate is correct regardless of the value of the wire,
i.e. the value implicated on W} is a controlling value of the gate.
For example, consider the implication (h,0) = (Gs,0) in the
circuit in Fig. 1. Based on this implication, a wire originating
from A can only be connected to AND (NAND) gates for which,
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TABLE III
CONDITIONS FOR ADDING REDUNDANT WIRES

: Logic Implications
G =0 T 0=T [ 150 [ IS1
AND = — invert = —
NAND = — invert = —
OR — invert = — =
NOR — invert = - =
NOT = NAND — — = NOR

if Gg = 0, the output of the gate is 0 (1), regardless of the value
of h.

Condition 2: The polarity of the redundant wire must be the
same as the polarity of the implicated value. For example, based
on the implication (e,1) = (Gs,0) in Fig. 1, a functionally
redundant wire originating from e must be inverted before being
connected to logic gates driven by Gs.

These two conditions are illustrated in Table III for all basic
gates, and logic implications. A row in the table corresponds
to a gate where W is an input, a column corresponds to a logic
implication of W on W, and an entry indicates whether W can
be connected, possibly inverted, to the gate driven by W, or not.
For example, if W; is connected to an OR gate, and (W5, 1) =
(W, 1), then W can be connected to the OR gate. However, if
(Ws,0) = (W, 1), then Wy has to be first inverted, and then
added to the OR gate. Finally, if W, is connected to an inverter,
and (Ws, u) = (W, u), then the inverter is replaced by either a
NAND gate, if u = 0, or a NOR gate, if u = 1. In this case, W
and W, are the inputs to the newly added gate, and the output of
the gate is connected to the fanout gates of the replaced inverter.

In addition to these two conditions, we need to ensure that the
circuit remains combinational after the addition of a wire. For
this reason, the source of the implication must not be in the tran-
sitive fanout of the target of the implication. Wires in the tran-
sitive fanout of a gate can be simply identified by performing
reachability analysis from the target of the implication, and ex-
cluding all reachable wires from the set of potential sources.
For example, G in Fig. 1 should be excluded as a source of
an implication for Gg because the latter, which is the target
wire of the implication, reaches GG1¢. Therefore, the implication
(G10,0) = (Gs,0) cannot be used.

VI. SELECTION ALGORITHM

The objective of the selection algorithm is to add to the cir-
cuit the minimal set of functionally redundant wires that max-
imizes the reduction in the SET sensitization probability. Se-
lection of the optimal set of such wires, however, is NP-com-
plete, and thus, computationally expensive. Therefore, we use a
greedy heuristic. And at each step we select, and add to the cir-
cuit the wire that provides the maximum reduction in SET sensi-
tization probability. The process is repeated until no additional
functionally redundant wire reduces the SET sensitization prob-
ability further. Besides the greedy selection, our method em-
ploys heuristics to address two additional sources of complexity.
The first one is the problem of accurately assessing the sensiti-
zation probability of SET in a circuit. To avoid exhaustive sim-
ulation of all input combinations for all SET, which is required
for calculating the sensitization probability, we use sampling.
More specifically, we evaluate the sensitization probability of
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each SET in the circuit by simulating a fixed number, M, of
random input patterns. The second one is the problem of per-
forming the above calculation for all candidate redundant wires
in the circuit. To reduce the search space, we only consider the
addition of functionally redundant wires which mask SET that
reach a primary output with high probability. More specifically,
while performing simulation to calculate the sensitization prob-
ability of SET, we keep track of the number of times that each
SET propagates to an output, we rank them in descending order,
and we select the top IV elements in this ranked list of SET.
For each of them, we then identify all the functionally redun-
dant wires that can mask it using one of the methods discussed
in Section IV. Finally, we evaluate the sensitization probability
of the circuit with each of these candidate wires added, and we
select the one that provides the maximum reduction in SET sen-
sitization probability. Our method is outlined in Algorithm 1.

Algorithm 1: Redundant Wire Selection

repeat

—Evaluate Ps.,s(old) of the circuit via simulation of
M random patterns;

—Psens(best) = Psens(old);

—Identify the N SET that are most frequently
propagated to the output of the circuit;

fori =1...Ndo

—Identify the k; redundant wires that mask the
ith SET;

forj =1...k do

—Add j-th wire to the circuit based on the
rules in Table III;

—Evaluate P;.ps(new) of the circuit;
If (Pscns(new) < Paens(old))

—Best redundant wire W,y = j-th
wire;

—Psens(best) = Psens(new);
end
end
If (Pons (best) < Paons(0ld)
—Add Wy, to the circuit;
until Psc,,s(best) = Psens(old);

While the above two heuristics significantly reduce the com-
putation time of the proposed soft error mitigation method, large
circuits imply that logic/fault simulation will require higher
computation time in comparison to smaller ones. Moreover, the
identification of redundant wires that realize logic implications
will also require higher computation time. This is attributed
to the complexity of the basic steps utilized by the proposed

IEEE TRANSACTIONS ON RELIABILITY, VOL. 57, NO. 1, MARCH 2008

method (i.e. the time it takes to perform logic/fault simulation
of a single input pattern, and to identify logic implications in
the circuit), and not the method itself.

The addition of a functionally redundant wire introduces
a new location where potential SET may occur. During the
progress of the algorithm, and while functionally redundant
wires are added, the overall SET sensitization probability may
be reduced, while the total number of potential SET will al-
ways increase. Therefore, the benefit from adding functionally
redundant wires reaches a point of diminishing returns, after
which the addition of redundant wires would not only increase
the total number of potential SET in the circuit, but also the
overall SET sensitization probability. At this point, further
addition of redundant wires would only increase the overall
SER, and therefore the algorithm terminates.

VII. EXPERIMENTAL RESULTS

In this section, we assess experimentally the SER reduction;
and the hardware, power, and delay overhead of the proposed
soft error mitigation method.

A. Setup

Algorithm 1 is applied on ISCAS’89 benchmarks [30], with
M = 250, and N = 25.3 This means that, in every step, fault
simulation [31] of M = 250 random input patterns is used to
identify the N = 25 most susceptible locations in the circuit, i.e.
the locations where an SET has a high sensitization probability,
Ps.,s, of reaching an output. The functionally redundant wire
that yields the highest Ps.,s reduction is then added to the cir-
cuit, and the process is repeated until no additional reduction in
P;.,s is possible. Candidate functionally redundant wires are
found by one of the three methods described in Section IV:
backward justification [22], the direct implication identification
procedure of FAN [23], or Recursive Learning [27]. The SER of
the original, and the final circuit are evaluated using SERA [6],
a soft error rate analysis tool. The hardware overhead is com-
puted based on transistor counts of the original, and the final
circuit. The power overhead is computed through the internal
BDD power simulator of SIS [32]. The circuit is then mapped to
the standard /ib2.genlib library, and the delay overhead is com-
puted based on the delay of the most critical path. The exper-
iments were performed on a Sun Workstation with a 440MHz
UltraSPARC IIi CPU, and 512MB RAM.

The results are reported in Tables IV-VI, for each of the
three implication identification methods, respectively. We pro-
vide circuit details in the first five columns: name, number of
inputs, number of outputs, gate count, and inverter count. In the
next three columns, we report the number of implications identi-
fied in the circuit, the number of redundant wires that are added,
and the CPU seconds required. In the following two columns,
we indicate the percentile reduction in Ps.,s, and the SER of
the circuit. In the last three columns, we report the percentile
overhead in terms of hardware, power, and delay.

30ur experimental results indicate that increasing the value of N beyond 25
would yield marginal reduction to the probability of sensitization at a significant
increase in computation time; thus, increasing the value of N beyond 25 is not
beneficial.
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TABLE 1V
EXPERIMENTAL RESULTS ON ISCAS’89 BENCHMARK CIRCUITS USING BACKWARD JUSTIFICATION

Implications Reduction (%) Overhead (%)

Name | PL | PO | Gates | Inv. | qqed [ Time | Poen, | SER | Hardware | Power | Delay
$298 17 | 20 75 44 460 4 0.03 4.08% 3.07% 1.64% 1.11% 5.45%
s344 | 24 | 26 101 59 722 3 0.04 1.51% 2.34% 1.49% 5.97% 2.78%
s641 54 | 43 107 272 | 5348 7 0.29 5.83% 5.70% 2.78% | 14.14% | 10.17%
$386 13 | 13 118 41 892 10 0.04 5.49% 5.53% 2.88% 5.51% | 12.30%
s444 | 24 | 27 119 62 826 18 0.05 | 10.16% 7.92% 9.66% | 19.56% | 14.23%
s713 54 | 42 139 254 | 4304 20 0.36 7.04% 7.91% 541% | 31.00% | 13.92%
$526 | 24 | 27 141 52 854 6 0.05 3.51% 2.79% 2.25% 3.53% 5.23%
s510 | 25 13 179 32 1127 27 0.07 | 21.60% | 17.59% 18.63% | 39.02% | 38.12%
s820 | 23 | 24 256 33 1338 36 0.08 | 12.03% | 14.37% 7.66% 9.92% 0.00%
s832 | 23 | 24 262 25 1321 30 0.08 | 11.09% 9.76% 6.11% 8.39% 0.83%
$953 45 | 52 311 34 3787 45 0.17 | 27.81% | 32.26% 13.46% | 17.77% | 71.13%
s1196 | 32 | 32 388 141 | 2960 31 0.27 | 15.32% | 11.01% 8.92% | 16.63% | 21.78%
s1238 | 32 | 32 428 80 2746 33 0.23 | 15.25% | 13.97% 10.09% | 16.76% | 36.16%
s1423 | 91 | 79 490 167 | 2874 56 0.37 | 12.04% | 10.70% 11.86% | 27.91% | 21.96%
s1488 | 14 | 25 550 103 | 2886 30 0.36 5.59% 2.43% 226% | 14.31% 3.10%
s1494 | 14 | 25 558 89 2829 25 0.35 5.24% 3.18% 2.15% | 12.98% 5.58%

Average 10.22% 9.41% 6.71% | 1529% | 16.43%
TABLE V
EXPERIMENTAL RESULTS ON ISCAS’89 BENCHMARK CIRCUITS USING DIRECT IMPLICATIONS
Implications Reduction (%) Overhead (%)

Name | PL | PO | Gates | Inv. Total | Added | Time Psens SER Hardware Power Delay
$298 17 | 20 75 44 1557 4 0.13 4.08% 3.07% 1.64% 1.11% 5.45%
s344 24 | 26 101 59 2185 4 0.21 2.19% 2.83% 2.23% 6.07% 0.00%
s641 54 | 43 107 272 7857 8 1.72 6.11% 5.94% 2.78% | 14.14% | 10.17%
$386 13 13 118 41 3714 10 0.22 5.49% 5.53% 2.88% 5.51% | 12.30%
s444 24 | 27 119 62 1807 19 0.26 | 11.34% 8.03% 10.23% | 19.44% | 14.16%
s713 54 | 42 139 254 6749 20 1.67 7.04% 7.91% 541% | 31.00% | 13.92%
$526 24 | 27 141 52 2860 6 0.32 3.56% 2.45% 2.02% 2.06% 4.99%
s510 25 13 179 32 8771 29 0.46 | 23.76% | 16.47% 17.92% | 40.34% | 38.19%
$820 23 | 24 256 33 17504 27 0.79 | 17.03% | 16.43% 5.28% 6.15% 0.00%
$832 23 | 24 262 25 17265 28 0.78 | 16.87% | 15.64% 5.85% 5.85% 0.00%
$953 45 | 52 311 84 28949 43 1.84 | 40.76% | 36.84% 16.82% | 21.48% | 31.43%
s1196 | 32 | 32 388 141 | 24739 39 293 | 20.70% | 27.61% 12.49% | 22.47% | 28.85%
s1238 | 32 | 32 428 80 26137 55 2.77 | 34.81% | 34.76% 18.16% | 30.26% | 40.77%
s1423 | 91 79 490 167 | 12237 77 3.08 | 14.95% | 17.09% 16.07% | 29.01% | 36.62%
s1488 | 14 | 25 550 103 | 52434 30 3.59 5.59% 2.43% 2.26% | 14.31% 3.10%
s1494 | 14 | 25 558 89 50107 60 3.58 | 16.60% | 11.51% 14.79% | 15.94% | 19.27%

Average 14.43% | 13.41% 8.55% | 16.57% | 16.20%

B. Results of Backward Justification

The results when using backward justification to identify im-
plications are summarized in Table IV. The average reduction
in SET sensitization probability is 10.22%, while the maximum
reduction is 27.81% for benchmark circuit s953. The average
SER reduction reported by SERA is 9.41%, and the maximum
reduction is 32.26%. As can be observed, the reduction in P, s
is strongly correlated with the reduction in the SER of the cir-
cuits. The incurred hardware overhead is typically smaller than
the achieved SER reduction. On average, hardware increases by
6.71%, and in the worst case, the hardware overhead is 18.63%
for s510. Even with this increase in hardware, which introduces
additional possible locations where a SET may occur, the SER is
reduced by 17.59%. Power consumption increases, on average,
by 15.29%; and delay increases, on average, by 16.43%. For
several benchmark circuits, however, the SER reduction is sig-
nificantly higher than the corresponding power & delay over-
head. For example, the power consumption of s953 increases
by 17.77%, while the SER is reduced by 32.26%. Similarly, the
SER of 5820 is reduced by 14.37%, while no delay overhead is
incurred.

C. Results of Direct Implications

The results when using direct implications are summarized
in Table V. The direct implication identification procedure
identifies 7.42x more implications than backward justification,
and requires 7.86x more CPU time. The number of implica-
tions added by Algorithm 1 increases, on average, by 18.40%.
In some circuits, such as $820, s832, and s953, fewer func-
tionally redundant wires are added to the circuit. Nevertheless,
the reduction in P;., is higher than the reduction in Pi,
reported in Table IV. In these circuits, we clearly observe the
benefits of direct implications, as fewer implications provide a
higher reduction in Pk.,s. The average P;.,s reduction across
all circuits is 14.43%, while the maximum reduction is 40.76%
for circuit s953. The average SER reduction is 13.41%, while
the maximum reduction is 36.84% for circuit s953. Once again,
the reduction in Psey,s, and in SER are strongly correlated.
The average hardware, power, and delay overhead is 8.55%,
16.57%, and 16.20%, respectively. In short, for an additional
1.84% hardware overhead, and 1.28% power overhead, direct
implications provide an additional reduction of 4.21% to Psey,s,
4.00% to SER, and 0.23% to the delay.

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:47 from IEEE Xplore. Restrictions apply.



30

IEEE TRANSACTIONS ON RELIABILITY, VOL. 57, NO. 1, MARCH 2008

TABLE VI
EXPERIMENTAL RESULTS ON ISCAS’89 BENCHMARK CIRCUITS USING INDIRECT IMPLICATIONS
. Implications Reduction (%) Overhead (%)
N PI | PO | Gat Inv.
ame ates w Total | Added Time Psens SER Hardware Power Delay
5298 17 | 20 75 44 1971 4 403 5.32% 6.86% 2.05% 1.82% 0.00%
s344 | 24 | 26 101 59 2378 4 427 2.19% 2.83% 223% 6.07% 0.00%
5641 54 | 43 107 272 8971 8 931 6.11% 5.94% 2.78% | 14.14% | 10.17%
5386 13 13 118 41 3762 10 137 5.49% 5.53% 2.88% 551% | 12.30%
s444 | 24 | 27 119 62 2450 21 933 | 12.95% 7.94% 10.80% | 20.65% | 14.14%
s713 | 54 | 42 139 254 9007 16 1125 8.48% | 12.49% 4.74% | 28.90% | 23.35%
§526 | 24 | 27 141 52 3203 9 4223 5.03% 8.70% 3.37% 411% | 11.72%
s510 | 25 | 13 179 32 9085 29 4354 | 23.76% | 16.47% 17.92% | 40.34% | 38.19%
$820 23 | 24 256 33 24763 36 67412 | 17.36% | 17.02% 7.27% 7.60% 0.00%
s832 | 23 | 24 262 25 27856 35 88849 | 17.14% | 19.74% 7.15% 6.70% 0.00%
5953 45 | 52 311 84 32015 45 21020 | 41.97% | 40.45% 17.49% | 21.74% | 29.70%
s1196 | 32 | 32 388 141 | 27445 46 234116 | 23.73% | 26.30% 15.07% | 29.17% | 30.73%
s1238 | 32 | 32 428 80 | 27127 60 319916 | 37.98% | 35.78% 21.35% | 36.76% | 37.67%
s1423 [ 91 [ 79 490 167 | 12654 77 42380 | 14.95% | 17.09% 16.07% | 29.01% | 36.62%
s1488 | 14 | 25 550 103 | 54922 28 19804 9.80% 7.21% 6.99% | 17.63% | 12.48%
s1494 | 14 | 25 558 89 58197 65 34507 | 18.47% | 14.62% 17.49% | 23.87% | 29.83%
Average 15.67% | 1531% 8.64% | 18.38% | 17.94%
D. Results of Indirect Implications 188 I R
The results when using indirect implications are summarized 2 801 i _l
. . . . « .
in Table VI. Recursive Learning was applied on the benchmark °C~ 701 |
circuits with a recursion depth of two, which is sufficient to iden- = gg | |
. . . . . . . . . . (o] 1 .
tify the majority of implications in a circuit [27]. The Recursive 5 4 | & |
Learning procedure requires around 30,000 x more CPU time, '?z 30{ .° |
and identifies 1.18 X more implications than the direct implica- ‘I\o 201 ° |
tion identification procedure. The increase in CPU time is very ~ ° 1071 l s953
substantial, and yields many more implications; yet the number 0 10 20 30 40 50 60 70 80 90 100

of added implications to the circuit increases by only 8.26%,
which translates to a moderate reduction of 1.24% in Pseps,
and 2.10% in SER over direct implications. Furthermore, the
hardware, power, and delay overhead reported in Table VI are
comparable to those reported in Table V. In short, the signifi-
cant increase in CPU time for identifying indirect implications,
along with the small additional SER reduction achieved over
direct implications, suggests that the latter provide the most at-
tractive option.

E. Trade-off Exploration

The proposed selection algorithm aims at assessing the ef-
fectiveness of adding functionally redundant wires in reducing
the SER of a circuit. As such, Algorithm 1 continues to select
& add functionally redundant wires to the design, regardless of
the incurred hardware overhead, as long as the P;.,,s continues
to reduce. Yet it is possible that interim solutions may constitute
a better trade-off point. For example, in Fig. 4, we show the in-
terim results of adding redundant wires identified through back-
ward justification for s953. The reduction in P, s, normalized
based on the maximum achievable Pi.,s reduction (27.81%),
is plotted against the incurred hardware overhead, also normal-
ized based on the total hardware overhead (13.46%). As seen on
the figure, the hardware overhead curve is monotonic with the
SER reduction. This is expected because the selection algorithm
adds the wire that provides the maximum reduction in the SER
of the circuit. However, the curve also shows that there are many
interim circuits on which similar Pi.,,s reduction to the final cir-
cuit is achieved, yet at a much lower cost. For example, 90% of
the total possible Ps., s reduction can be achieved by only 40%
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Fig. 4. Reduction in P;.,,; vs. H/W overhead.

of the corresponding hardware overhead. In other words, while
the maximum P,.,,; reduction of 27.81% incurs an overhead of
13.46%, a slightly lower Ps.,s reduction of 25.03% incurs an
overhead of only 5.38%. Therefore, if the resources are limited,
the selection step can be terminated when the overhead, in terms
of hardware in this example, is exceeded. To assess the potential
of adding functionally redundant wires, we opted to use a se-
lection algorithm that returns the logic implementation with the
maximum achievable SER reduction. The proposed algorithm
can be easily modified to drive the selection of functionally re-
dundant wires based on a user-specified cost function including
hardware, power, and/or delay overhead; and to terminate the
selection procedure if a user-specified target on the probability
of sensitization is reached.

VIII. CONCLUSIONS

Logic implications constitute a source of fine-grained invari-
ance that can be exploited to mitigate soft errors. More specif-
ically, the addition of functionally redundant wires that realize
these logic implications reduces the susceptibility of logic cir-
cuits to SET. Identification of logic implications, and selective
addition of functionally redundant wires through the methods
and algorithms described herein, result in significant SER re-
duction, commensurate with the incurred hardware, power, and
delay overhead. The proposed mitigation method averts soft er-
rors at the gate level; and thus it is orthogonal to, and can be
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combined with, circuit-level SER reduction methods such as
gate and transistor resizing, and/or hardened flip-flop designs.
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