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Abstract—We introduce a methodology for dynamically select-
ing whether to subject a wafer to a complete or a reduced
probe-test flow, while ensuring that the concomitant test cost
savings do not compromise test quality. The granularity of this
decision is at the wafer-level and is made before the wafer
reaches the probe station, based on an e-test signature which
reflects how process variations have affected this particular
wafer. While the proposed method may offer less flexibility than
approaches that dynamically adapt the test flow on a per-die
basis, its implementation is simpler and more compatible with
most commonly used Automatic Test Equipment. Furthermore,
unlike static test elimination approaches, whose agility is limited
by the relative importance of the dropped tests, the proposed
method is capable of exploring test cost reduction solutions
which maintain very low test escape rates. Decisions are made
by an intelligent system which maps every point in the e-test
signature space to either the complete or the reduced test flow.
Training of the system seeks to maximize the number of wafers
subjected to the reduced flow for a given target of test escapes,
thereby enabling exploration of the trade-off between test cost
reduction and test quality. The proposed method is demonstrated
on an industrial dataset of a few million devices from a Texas
Instruments RF transceiver.

I. INTRODUCTION

Continuous pressure for superior performance, along with
intensified process variations and non-idealities in the latest
semiconductor manufacturing technology nodes, have resulted
in stringent limitations in the cost that can be devoted to
testing each die, in order to ensure that it functions correctly
before it is shipped to a customer. Especially in the analog/RF
domain, where industrial practice still relies largely on lengthy
test procedures and expensive instrumentation to explicitly
measure the performances of a device and compare them to
its specifications, test cost reduction has become a crucial
requirement for maintaining profitability. Among the various
directions which have been explored towards reducing test
cost, significant effort has been invested in challenging the
practice of subjecting every die in production to the exact
same set of tests. Generally termed “adaptive test”, methods
in this category seek to customize the test process to the needs
of a target die, wafer, or lot, anticipating that the benefits from
a reduced test flow will outweigh the effort and expenditure
required for such customization.

A very simple and commonly practiced approach to test cost
reduction is to monitor the relative effectiveness of each test
and drop the ones which contribute little or not at all to the
overall test effectiveness [1]-[3]. Such decisions are usually
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static and are easy to implement on the ATE by exclusion of
the relevant portion of the test program. However, the agility of
such methods is insufficient to support solutions which offer
savings yet maintain very low test escapes; essentially, they
are bound by the percentage of faulty die that the dropped
tests uniquely detect. Advanced versions of this idea, wherein
statistical correlation between the dropped and retained tests
is leveraged to predict the outcome of the former, have
also been proposed [2], [4]-[6]. While additional ATE or
external support is required to run the statistical models on-
the-fly during test, these methods have demonstrated marked
improvement in test quality. Still, the decision models remain
static or only infrequently retrained to account for major events
which can change the statistical profile of the production.

As a first step towards dynamic test adaptation, re-
optimization of the test list on a per-lot basis based on the
data obtained from the first few wafers, on which the complete
flow is applied, was explored in [7]. Taking adaptation a step
further, the method in [8] identifies, through sampling and
clustering, wafer regions which have been affected similarly
by process variations, and customizes the test list and test order
to each such region. While this method was demonstrated in
the context of final test, it could be readily applied at probe-
test. However, it would complicate test floor logistics, as it
would require two passes (for sampling and testing) and ATE
support for applying different test programs to each region of
the wafer. In fact, any adaptive solution at a finer granularity
than the wafer-level would require such support, which is often
missing or cumbersome to implement in ATE platforms.

Along a different direction towards eliminating items from
the test list, various methods have taken advantage of wafer-
level spatial correlation. Specifically, these methods identify
test items which exhibit high such correlation and only per-
form these tests on a small sample of die across the wafer,
from which they build the correlation model [9], [10]. These
tests are, then, omitted for the rest of the die on the wafer
and their value is predicted through the learned model, as
a function of die coordinates on the wafer. Extensions to
spatio-temporal correlation across an entire lot have also been
investigated [11]. Besides being limited only to test items
which exhibit spatial correlation, such methods also require a
two-pass approach (for sampling and testing) and/or may need
to delay the die-level test decisions until the entire wafer or the
entire lot has been processed, thereby complicating logistics.
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Fig. 1: Wafer-level probe-test flow selection

In this work, we seek to develop an adaptive test flow which
combines the advantages of the aforementioned methods,
while abiding by the following principles in order to be readily
deployable with minimal test operations support:

o Adaptation is limited to a very small number of options:
in our case, the choice is between a complete test flow
and a reduced version, wherein any number of tests may
be omitted.

e The granularity at which test elimination decisions are
made is at the test group level. The underlying assumption
here is that the bulk of the cost incurred by a test group
is related to switching into the appropriate test configura-
tion. Accordingly, the incremental savings of eliminating
a few measurements within a group are negligible.

o The granularity of the adaptation decision is at the wafer
level, i.e., all die on a wafer are subjected to the same
test flow, either the complete or the reduced version.

o Test has to be performed in one pass. In other words,
solutions which first apply the reduced test flow and
subsequently apply selectively the remaining test items
to die for which the decision confidence is low, such as
the two-tier test method in [12], are not within scope.

o The decision has to be driven by a signature which
reflects how process variations have affected a particular
wafer. This is justified by historical evidence document-
ing that the necessity of a test group is strongly correlated
with the operating point of the fabrication process.

o The decision has to be available prior to insertion of the
wafer in the probe station and cannot be informed by
measurements taken at probe. Inevitably, this leaves e-
test! as the only source available for capturing the impact
of process variations on a particular wafer.

Consistent with the above constraints, an overview of the
proposed wafer-level process variation-driven probe-test flow
selection method is depicted in Figure 1. The key component
of this method is an intelligent system, which is trained to map
the e-test measurements obtained from a wafer to a decision
regarding application of the complete or a reduced test flow to
every die of this wafer. A detailed description of the proposed

By the term e-test we refer to electrical measurements, which are typically
performed on a few select locations across the wafer, using process control
monitors (PCMs) included on the wafer scribe lines.
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Fig. 2: Steps of proposed method: training involves reduced
test flow selection, wafer signature creation, and intelligent
system training. Testing of new wafer involves signature
computation and processing by trained intelligent system for
selection of appropriate test flow

methodology, including identification of the most appropriate
reduced test flow and training of the intelligent system to
achieve a target test escape rate is presented in Section II.
Experimental results demonstrating the effectiveness of the
proposed method on a large industrial dataset are presented
in Section III and conclusions are drawn in Section IV.

II. PROPOSED METHODOLOGY

As depicted in Figure 2, the three key elements of the
proposed method are: (i) identifying an appropriate subset
of test groups which will serve as the reduced test flow, (ii)
crafting a wafer signature from its e-test measurement vector,
and (iii) training an intelligent module to map these wafer
signatures to either the complete or the reduced probe-test flow
while maintaining test quality within a given DPPM target.
Once the training phase is finished, the e-test signature for
each new wafer is computed and fed into the trained intelligent
system, which selects the appropriate test flow for this wafer.
Details of these three components are provided below.

A. Reduced Test Flow Selection

A reduced test flow is a subset of the complete flow, wherein
one or more test groups are eliminated. The first challenge
that naturally arises is the selection of the test groups which
should be omitted in the reduced flow, such that the attained
test cost reduction does not compromise test quality beyond a
target level of acceptable test escapes. Since the granularity of
elimination is at the test group rather than the test item level, it
may be possible to exhaustively search the space of solutions.
For example, in our experiments we dealt with a set of 14 test
groups, thus exhaustively searching in the power-set of 24
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Fig. 3: Projection of e-test data onto the top two principal components

subsets of the complete test flow to find the optimum subset
was feasible and chosen due to its simplicity. In case of a large
number of test groups, however, this approach will not scale.
In this case, heuristic search methods can be employed for
effectively searching this space. The use of Genetic Algorithms
has been popular in the literature and very successful when
applied to this task [6], hence we can readily adopt it when
exhaustive consideration is infeasible.

For each reduced flow, j, we consider the associated cost
and the number of test escapes when this reduced flow is
applied to all wafers in our training set, and we assign a fitness
value using:

, ta—tB;
inder; = ———=

* pelgp, (1)
where, tg ; denotes the test cost of the j-th reduced flow, £ 4
denotes test cost of complete test flow and pctgp; represents
the percentage of wafers that can be tested using the j-th
reduced test flow, while the total number of test escapes
remains below a target DPPM level.

B. Wafer Signatures Based on E-tests

E-tests data contain many types of parameters, mainly
focusing on simple physical/electrical characteristics reflecting
the position of a wafer in the process space. For some of
these measurements, there is no physical connection or reason
why they should be correlated with probe-test outcomes or
the necessity thereof. Accordingly, to avoid spurious autocor-
relations and to gain better insight from our e-test data, prior
to crafting a wafer signature based on the e-tests we apply
a dimensionality reduction and filtering stage. Specifically,
we perform principal component analysis (PCA), which is
a commonly used technique for unsupervised dimensionality
reduction. PCA projects the data onto a new set of orthonormal
components, each of which captures part of the variability of
the data. We then retain only the principal components that
capture 90% of the information content of the data.

In Figure 3, we provide an example where we project a
number of wafers to a 2-dimensional space whose two axis
correspond to the two main principal components of the e-tests

of these wafers after performing PCA. The various markers
used to represent each point indicate different test escape rates
when a randomly selected reduced test flow is applied for
all wafers. Wafers with the same marker exhibit similar level
of test escapes. Two key observation can be made using this
figure:

1) Projection of wafers on the e-test space is discontinuous,
with most wafers being part of small clusters in this 2-
dimensional space. This reflects the fact that the process
jumps between a finite number of points.

2) Wafers within each cluster, i.e., with similar e-test sig-
nature, do not necessarily exhibit the same test escape
rate. This implies that the correlation between device
specifications and e-test parameters is complex and there
is no simple boundary to separate wafers with high test
escapes from wafers with low or zero test escapes. A
more elaborate approach is, consequently, required for
mapping e-test signatures to the appropriate test flow.

Accordingly, our method partitions the projected e-test space
into k clusters. For this purpose, k-means clustering is applied
and Gap statistics [13] is used to estimate the number of
clusters. Wafer signatures are, then, mapped to the closest
cluster and decisions regarding complete vs. reduced test flow
are made at the cluster level.

C. Mapping Wafer Signatures to Probe-Test Flows

We now proceed to elaborate on how the intelligent system
is trained to map the e-test signature of a wafer to either the
complete or the reduced test flow. Recall that our objective is
to save test cost by applying a reduced test flow to a subset of
wafers, while keeping test escapes below a given DPPM level.
Evidently, the more wafers we funnel to the reduced test flow,
the higher the test cost reduction we can achieve. Thus, our
problem is to map the e-test signature space to the appropriate
test flow, such that we meet both of the above objectives.

We formulate this problem as an integer linear program
(ILP). An ILP consists of a set of variables, which can only
assume integer values, a set of linear constraints on these
variables, and a cost function which is to be maximized or
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Fig. 4: Tracking process shifts: signatures of wafers belonging
to cluster are enclosed by a boundary. New cluster members
with signatures within the boundary are considered equivalent,
and new members with signature outside the boundary are
considered outliers

minimized. In our problem, our constraint is on the total num-
ber of test escapes, and our cost function is the maximization
of the number of wafers that go through the reduced flow. Our
ILP is actually a binary (0-1) version, where the value of each
integer variable can only be either 0 or 1. Specifically, in our
ILP, the variable «; is used to indicate whether the wafers that
belong to cluster ¢ should be subjected to the complete test
(i.e., a; = 0) or to the reduced flow, a; = 1. Suppose that we
have a reduced test flow, T'F'p, whose test escape vector for
training wafers is, T'E'g, and whose test cost is tp. Let also
denote the targeted DPPM level as DPPM,. Then our 0-1
ILP is defined as follows:

tei= Y. TE}
j €C; @)
C; : all wafers in the cluster i
k
Maximize Y. aj.card;
i=1
3)

k
subject to Y ay.te; < DPPM,

i=1

OéiE{O,l}, i=1,...,k

where k is the number of clusters, and te; and card; are the
total number of test escapes and the cardinality of the ¢-th clus-
ter, respectively. This procedure is repeated for all candidate
reduced flows, each time resulting a mapping between clusters
in the e-test space and the appropriate test flow, through the
chosen values for the «; variables. This mapping is learned
based on a training set of wafers, on which it ensures maximal
test cost reduction while meeting the required test quality.
An additional provision is also incorporated in the intel-
ligent system, in order to adapt to shifts in the process,
which may result in previously unseen wafer signatures in the
projected e-test space. Specifically, as shown in Figure 4, for
clusters which the ILP maps to the reduced probe-test flow, we
establish a boundary around the e-test signatures that belong to
the cluster. For a new wafer, the distance of its e-test signature
from the centers of the clusters is first computed, and the
wafer is assigned to the nearest cluster. If the decision for this
cluster is to apply the reduced test flow, we perform one more

check: if its signature is inside the boundary of that cluster,
we follow the recommendation. Otherwise, we assume that
despite being nearest to this cluster, the wafer is sufficiently
different and we send it to the complete test flow. However,
once the tests are performed, we also examine whether the
reduced test flow (which is a subset of the complete flow
and, therefore, available) would have resulted in test escapes
below the acceptable DPPM level. Based on this information,
we periodically enhance the set of clusters and retrain the
intelligent system to better track the process.

III. EXPERIMENTAL RESULTS

In order to experimentally evaluate the effectiveness of
the proposed methodology, we use actual production data
from a 65nm analog/RF transceiver currently in high volume
manufacturing (HVM) production by Texas Instruments?. The
dataset comes from 1800 wafers, each of which contains
approximately 1500 die. E-test is performed on 9 sites across
the wafers, with 54 measurements obtained from each site.
On each die, 168 parametric probe-test measurements are
obtained, organized in 14 groups. The percentage by which
each group contributes to the total test cost is also provided.
The objective of our method is to select a subset of the 14
test groups as the reduced test flow and to train an intelligent
system which will use the 9 sets of 54 e-test measurements
to predict whether a wafer should undergo the complete or
the reduced probe-test flow. In our experiments, we use 50%
of the data for training and the remaining 50% for validation.
Using this dataset, our experiments seek to:

o Confirm that static test group elimination does not have
the agility to support reduced test flows while maintaining
a test escape rate in the very low DPPM region.

o Determine the upper bound of test cost savings which can
be expected through adaptive per-wafer selection between
the complete and the reduced test flow, in the ideal
scenario where an oracle is used to make the decision.

« Evaluate the adequacy of the information contained in the
e-test measurements for driving the decision between the
complete and the reduced test flow.

o Demonstrate that the proposed method enables better
exploration of the trade-off between test cost and test
quality, thereby yielding viable test cost reduction solu-
tions in the very low DPPM region.

A. Limits of Static Test Elimination

Figure 5 reflects the number of defective die per million
which are uniquely detected by each of the 14 test groups.
In other words, this is the number of devices which would
escape detection if each of these 14 test groups were to
be statically eliminated from the probe-test flow. While we
cannot reveal the exact number for DPPM,,;,, its order of
magnitude is in the few hundreds. Accordingly, static test
elimination cannot be used for test cost reduction when test

2Details regarding the device and exact test escape numbers and DPPM
levels may not be released due to an NDA under which this data has been
provided to us.
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Fig. 5: Defective die per million which would escape detection
if each of the 14 test groups were to be statically eliminated
from the probe-test flow

quality expectations are set below this level. Exploration of
the test cost vs. test quality trade-off in the sub-DPPM,,;,
realm requires dynamic per-wafer adaptation of the test flow.

B. Test Cost Reduction Potential

The upper bound of test cost reduction which can be
achieved through the proposed probe-test flow selection
method depends on the level of acceptable test escapes. To
obtain a better feel for this potential, we first selected 6
different DPPM levels, DPPM; through DP P Mg, ranging
in increasing order from a few tens to a few hundreds. As an
additional point of reference, DPPM; was set to the value
of DPPM,,;, in the previous subsection. Then, for each of
these targets, we considered each of the possible subsets of
the 14 test groups as the reduced test flow, and we identified
the maximum number of wafers in our dataset which could
be subjected to the reduced flow, without the overall test
quality (across all wafers) falling below this target. Using the
relative test costs of the 14 test groups, we then calculated the
maximum test cost reduction possible for each such solution.

Figure 6 presents the results. Each of the 6 curves cor-
responds to a different DPPM level. The x-axis reflects the
list of the possible reduced test flows, rank ordered through
Equation 1, while the y-axis reflects the test cost reduction
achievable for the target DPPM level. Evidently, the leftmost
points of these curves are the ones of the highest interest,
as they maximize savings for a given DPPM level. These
numbers reveal that significant test cost reduction may be
possible, even for very low test escape rates. We emphasize,
however, that this test cost reduction is an upper bound, as
it assumes availability of an oracle that can perfectly select
the appropriate test flow for each wafer. In reality, depending
on what mechanism is used for making this decision, only
a fraction of this upper bound may be achievable. Finally,
as expected, these curves confirm that the larger the targeted
DPPM level, the higher the test cost reduction that may be
achieved, since more wafers can be channeled to the reduced
test flow.

C. Adequacy of E-test for Flow Selection

Since our proposed method relies on e-test for deciding
whether to apply the complete or the reduced test flow, we
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need to evaluate the adequacy of the information reflected
in e-test for accurately making this decision. To this end,
we applied the methodology described in Section II for each
of the 6 targeted DPPM levels mentioned in the previous
subsection, DPPM;, through DPPMg. In each case, the
method returned a reduced test flow, as well as a trained
intelligent system, which we used to split the wafers in the
validation set into two groups, with wafers in group A slated
to be subjected to the complete flow, and wafers in group B
slated to be subjected to the reduced flow. We, then, computed
the average test escapes that would occur for wafers in each
of these two groups, if they were subjected to the reduced
test flow. The results are depicted in Figure 7. As may
be observed, wafers in Group A consistently exhibit much
higher test escape rate than wafers in Group B. Thereby, the
decision to channel them to the complete test flow is well
justified, demonstrating that the e-test of a wafer can drive an
informed choice regarding the test flow that the wafer should
be subjected to.

D. Test Cost vs. Test Quality Trade-off Exploration

The ability of the proposed method to facilitate exploration
of the trade-off between test cost reduction and test quality,
even in the region of very low DPPM, is demonstrated in
Figure 8. The two curves on this graph reflect solutions achiev-
able by the proposed method and by static test elimination,
respectively. Evidently, the adaptive nature of the proposed
test flow selection method enables it to outperform static
test elimination across the board. More importantly, it allows
higher fidelity in the selection of a desirable point on this trade-
off, starting from solutions with very low DPPM and small
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Fig. 8: Test cost reduction vs. test accuracy for the proposed
method and static test elimination

test cost reduction, and progressing at very fine-grained steps
towards higher test cost reduction with higher test escape rate.
In contrast, static test elimination does not offer any solution
with test escapes below DPPM,,;, and progresses at very
coarse steps.

Finally, to gain better insight as to how well our method
works, in Figure 9 we compare its test cost reduction to the up-
per bound achievable when an oracle is used, for various target
DPPM levels. While it is evident that in the realm of very low
DPPM the proposed method leaves significant potential for
test cost reduction on the table, the gap continuously shrinks
as the targeted DPPM increases. This is explained by the fact
that at very low DPPM levels, incorrectly channeling a wafer
to the reduced instead of the complete flow can be detrimental
and very difficult to recover from. In other words, very low
DPPM leaves little room for error, hence the proposed method
acts conservatively, selecting very few e-test signatures for the
reduced test flow and, thereby, limiting the achieved test cost
reduction.

IV. CONCLUSION

Judicious wafer-level selection between the complete probe-
test flow and a carefully reduced version shows great promise
towards test cost reduction in analog/RF ICs. As demonstrated
herein, this selection may be effectively driven by an early
signature obtained through e-test, reflecting how process varia-
tions have affected a given wafer. Deployment of the proposed
test flow selection method requires minimal test infrastructure
support, yet is capable of identifying solutions with very
low test escape rates, which is not possible through static
test elimination. Experimental results using a large dataset of
actual test measurements from a 65nm Texas Instruments RF
transceiver confirmed the aptitude of the proposed method in
effectively exploring the trade-off space between test quality
and test cost.
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