Digital Circuit Design Using Xilinx ISE Tools

Contents

To INEFOAUCTION ...ttt sttt e st e st eseane e 1
2. Programmable LOGIC DEVICE: FPGAeeeeeeeeeeeeeeeeeeeeeee e e ettt ta e e e e e et eestesaaaaesesesinsssnanaaeas 2
3. CreQting G NEW PIOJECEccoeeeeeeeeee ettt e e e e e e e ettt e e e e e e e ettt saeeeeaaeesetsnaaaaeeaees 2
4. Synthesis and Implementation Of thE DeSiGNc.ceeeeeeuueeeessiiiiieesiiiieeesiiieeeesiiiesessiieaenns 11
5. Functional Simulation of CombinationQl DESIGNSccccueeeeeecuveeeeeiiiiieeesiiieeeesiiieeessiienenns 14
6. Preparing and downloading bitstream file for the Spartan FPGA:eeeeeeeccvvvvereeaaeeann, 22
7. Testing a DigitQl LOGIC CIlCUIL............uueeeeeeeeeiieeees e e ettt e e e e e e et a e e e e e e s ssssanaaaaeeeessnnsens 27
8. Design and Simulation of Sequential Circuits using Verilog HDL...............cccouveeeecvveeeeciivenann. 31
9. Hierarchical Circuit Design USing MOGQUIESuuveeeeeeieeeeeeeeeiieeeeeeeescsieteea e e eesccaeeeaaens 33
Appendix-A: Verilog Hardware MOEIING.............couueeeceeiiiiveeeeeeeeeeeee e eeeeceeesceccraaraeeereeeeeaee e 35
Appendix-B: INStAIlING XiliNX WEDPACK.............ccueeeieeeeeeeeiireiecieeseeste e ssvessseeeseesaeste s sssessensssensenn 42
Appendix-C — Downloading and Installing ModelSim PE (Student Version)..................cccccuueeunn. 47
Appendix-D — Connecting Xilinx and MOEISIIm PE.............ouuuueeeevcineeecieiieeesveceeseesse e sesessesssenses 49

I. Getting started

If you wish to work on this tutorial and the laboratory at home, you must
download and install Xilinx and ModelSim. These tools both have free
student versions. Please accomplish Appendix B, C, and D in that order
before continuing with this tutorial. Additionally if you wish to purchase
your own Spartan3 board, you can do so at Digilent’s Website. Digilent
offers academic pricing. Please note that you must download and install
Digilent Adept software. The software contains the drivers for the board
that you need and also provides the interface to program the board.

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,790&Prod=BASYS2

1. Introduction

Xilinx Tools is a suite of software tools used for the design of digital circuits implemented
using Xilinx Field Programmable Gate Array (FPGA) or Complex Programmable Logic
Device (CPLD). The design procedure consists of (a) design entry, (b) synthesis and
implementation of the design, (c) functional simulation and (d) testing and verification. Digital
designs can be entered in various ways using the above CAD tools: using a schematic entry tool,
using a hardware description language (HDL) — Verilog or VHDL or a combination of both. In
this lab we will only use the design flow that involves the use of Verilog HDL.

The CAD tools enable you to design combinational and sequential circuits starting with Verilog
HDL design specifications. The steps of this design procedure are listed below:

1. Create Verilog design input file(s) using template driven editor.

2. Compile and implement the Verilog design file(s).

3. Create the test-vectors and simulate the design (functional simulation) without using a
PLD (FPGA or CPLD).

4. Assign input/output pins to implement the design on a target device.

5. Download bitstream to an FPGA or CPLD device.

6. Test design on FPGA/CPLD device

A Verilog input file in the Xilinx software environment consists of the following segments:
. Header: module name, list of input and output ports.
. Declarations: input and output ports, registers and wires.
. Logic Descriptions: equations, state machines and logic functions.

. End: endmodule

All your designs for this lab must be specified in the above Verilog input format. Note that the
state diagram segment does not exist for combinational logic designs.

2. Programmable Logic Device: FPGA

In this lab digital designs will be implemented in the Basys2 board which has a Xilinx Spartan3E
—XC3S250E FPGA with CP132 package. This FPGA part belongs to the Spartan family of FPGAs.
These devices come in a variety of packages. We will be using devices that are packaged in 132
pin package with the following part number: XC3S250E-CP132. This FPGA is a device with about
50K gates. Detailed information on this device is available at the Xilinx website.

3. Creating a New Project

Xilinx Tools can be started by clicking on the Project Navigator Icon on the Windows desktop.
This should open up the Project Navigator window on your screen. This window shows (see
Figure 1) the last accessed project.

http://www.xilinx.com/products/products.htm

IS 15E Project Navigator (M.53d) -

cuments and Setting:

¥ Documents'School

=18 x|

%% File Edit Yiew Project Source Process Tools Window Layout Help ;IEI 1'
ID2EG . lsbboxwel s 2asraAz2aa=lselr= L9
sl ©0O& X | Design Overvien = o_gate Project Status =
vigw: ¢ {8k Implementation ¢ M Simulation - - TS =
D . P M 6 @ IOB Properties Project File: of_gate, xise Parser Errors: Mo Errars
Ggl Hierarchy | -+ [E] Madule Level Utiization Module Name: o_gate Implementation State: |Flaced and
.Eilﬂ ar_gate @ @ Tirming Constraints Routed
- - ey Finout Report
T EE XC3SED 5pa203 c) E P Target Device: xC3s50-5pq208 =Errors: Mo Errars
& L % 0_gate (0_gate.v) - [2] Clock Report
o i | @ Static Timing Product Version: |15F 12.1 »Warnings: Mo Warnings
El % El Errors and Warnings Design Goal: EBalanced *Routing Al Signials
- - [£] Parser Messages Results: Completely
o4 [E synthesis Messages Routed
Translation Messages
Ia — E Map Messages 9 Design Strategy: | iin: Default * Timing
= {unlocked Constraints:
| - [2] Place and Route Messages
[Z Timing Messages Environment: System Settings =Final Timing 0 (Timing o
D Bitgen Messages b Score: Report
. —[2 Al Implementation Messages
= | B2 Mo Processes Running £ Detailed Reports
% Processes: o_gats e Synthles.is Repart Device Utilization Summary [-1
Ep{: [Diesign SummaryReports E I:ansnatlonpReport LI Logic Utilization Used | Available | Utilization | Note(s)
= ! " =1 Man Danor
S BEZngaLulﬂt;ILtrIZiits Design Properties Mumber of 4 input LUTs 1 1,53 1%
Ert. corth st .|:| Enaple Message Filkering Mumber of accupied Slices 1 7es 1%
ynthesize Optional Design Summary Contents
Implement Design [Show Clack Repart Mumber of Slices containing only 1 1 100%
Generate Programming File [1 Shows Failing Constraints related logic
Configure Target Device | gpow \é\darnlngs Mumber of Slices containing il 1 0%,
Analyze Design Using ChipScope [Show Errors urirelated logic
Takal Murnber of 4 input LUTs 1 1,536 1%
Mumber of bonded I10Es 3 124 2% J
=
E Start EME Design | U™y Files | E Librar\esl l E 15E Design Suite InfoCenter EN = Design Summary x|
Console 08 x

Launching Design Swmary/Report Viewer...

K I

INFO:HDLCompiler:1062 — Parsing Verilog file "C:/Documents and Settings/Administrator/My Documents/School/Digital
A INFO:ProjectMomt: 656 — Parsing design hierarchy completed successfully.

Circui

tsz’;l

Console @ Errars I_Ij ‘Warnings I iﬁ Find in Files Results

Figure 1: Xilinx Project Navigator window (snapshot from Xilinx ISE software)

3.1 Opening a project

Select File->New Project to create a new project. This will bring up a new project window
(Figure 2) on the desktop. Fill up the necessary entries as follows:

< Back MNest >] ’ LCancel

ES New Project Wizard - Create New Project IZIIENXI

Enter a Mame and Location for the Project

Project Hame: Froject Location

o_gate | |E:'xNivash'xT.-‘l'-."-.nemLIaI:-'xsample_e:-:ern::ises'xn:n_gate | E]

Select the Type of Top-Level Source for the Project
Top-Level Source Tope:

HDL o

Figure 2: New Project Initiation window (snapshot from Xilinx ISE software)

Project Name: Write the name of your new project

Project Location: The directory where you want to store the new project (Note: DO NOT
specify the project location as a folder on Desktop or a folder in the Xilinx\bin directory.
Your H: drive is the best place to put it. The project location path is NOT to have any spaces
in it eg: C:\Nivash\TA\new lab\sample exercises\o_gate is NOT to be used)

Leave the top level module type as HDL.

Example: If the project name were “o_gate”, enter “o_gate” as the project name and then click
“Next”.

Clicking on NEXT should bring up the following window:

ES New Project Wizard - Device Properties E”E”Xl

Select the Device and Design Flow for the Project

Property Hame Y alue

Product Category All w
F arnily Spartan3E w
Device #C35250E w
Package CP132 w
Speed -4 w
Top-Level Source Type HOL

Synthesis T ool ®5T MWHDLAernilog] w
Simulator b odelzim-<E Yenlog w
Enable Enhanced Design Summary

Enable Meszzage Filkering FI

Dizplay ncremental Meszages]

< Back] [Meat = l ’ Cancel

Figure 3: Device and Design Flow of Project (snapshot from Xilinx ISE software)

e For each of the properties given below, click on the ‘value’ area and select from the list of
values that appear.

o

o

Device Family: Family of the FPGA/CPLD used. In this laboratory we will be using
the Spartan3E FPGA'’s.

Device: The number of the actual device. For this lab you may enter XC3S250E
(this can be found on the attached prototyping board)

Package: The type of package with the number of pins. The Spartan FPGA used in
this lab is packaged in CP132 package.

Speed Grade: The Speed grade is “-4”.

Synthesis Tool: XST [VHDL/Verilog]

Simulator: The tool used to simulate and verify the functionality of the design.
Modelsim simulator is integrated in the Xilinx ISE. Hence choose “Modelsim-XE
Verilog” as the simulator or even Xilinx ISE Simulator can be used.

Then click on NEXT to save the entries.

All project files such as schematics, netlists, Verilog files, VHDL files, etc., will be stored in a
subdirectory with the project name. A project can only have one top level HDL source file (or
schematic). Modules can be added to the project to create a modular, hierarchical design (see

Section 9).

In order to open an existing project in Xilinx Tools, select File->Open Project to show the list of
projects on the machine. Choose the project you want and click OK.

Clicking on NEXT on the above window brings up the following window:

ES New Project Wizand - Create New Source [Z”E|E|

Create a Mew Source

Source File Type

1 Remove

Creating a new source to add to the project iz optional. Only one new source can be created with the Mew Project 'wizard.
Additional sources can be created and added to the project by uzing the "Project->Mew Source’’ command.

E xisting gources can be added on the nest page.

¢ Back ” Mest » l ’ Cancel

Figure 4: Create New source window (snapshot from Xilinx ISE software)

If creating a new source file, Click on the NEW SOURCE.

3.2 Creating a Verilog HDL input file for a combinational logic design

In this lab we will enter a design using a structural or RTL description using the Verilog HDL. You
can create a Verilog HDL input file (.v file) using the HDL Editor available in the Xilinx ISE Tools
(or any text editor).

In the previous window, click on the NEW SOURCE

A window pops up as shown in Figure 4. (Note: “Add to project” option is selected by default. If
you do not select it then you will have to add the new source file to the project manually.)

EE New Source Wizard - Select Source Type :”:.[z|

{] IP [Coregen & Architecture YWizard)
] Schematic

File name:
||:|_gate.~.-' |
Location:

|F]WHDL Package o .

ua| WHOL Test Berich |I:."~I'~Iwash"xT.-'l‘-."-.new_lal:u'xsampIe_e:-:en:mes"u:u_gate | E]

&dd to project

< Back Mest = l ’ Cancel

Figure 5: Creating Verilog-HDL source file (snapshot from Xilinx ISE software)

Select Verilog Module and in the “File Name:” area, enter the name of the Verilog source file
you are going to create. Also make sure that the option Add to project is selected so that the
source need not be added to the project again. Then click on Next to accept the entries. This
pops up the following window (Figure 5).

E Mew Source Wizard - Define Module

Module Mame |o_gate |
Port M arne Drirection Bus MSE LSE ~
a itk w []
b P w []
z CrT—
P w []
P w []
P w []
inpLat w []
P w []
P w []
inpLat w []
inpt] b
. i il
[< Back] [Mext = l [Cancel

Figure 6: Define Verilog Source window (snapshot from Xilinx ISE software)

In the Port Name column, enter the names of all input and output pins and specify the
Direction accordingly. A Vector/Bus can be defined by entering appropriate bit numbers in the
MSB/LSB columns. Then click on Next> to get a window showing all the new source
information (Figure 6). If any changes are to be made, just click on <Back to go back and make
changes. If everything is acceptable, click on Finish > Next > Next > Finish to continue.

EE New Project Wizard - Project Summary E“E|E|

Project Mavigatar will create a new project with the following specifications:

Fraoject:
Froject MName: o _gate
Project Path: C:'\Niwvash'Ti'new lab'sample exercisesho gate'\o gate
Top Lewvel Source Type: HDL

Device:
Device Family: ZpartansE
Device: ¥o3isZ250e
Package: Ccpliz
Speed: -4

Synthesis Tool: 3T (VHDL/Verilog)
Simulator: Modelsiwm-ZE Verilog

Enhanced Design Sunmary: enabled
HMeszage Filtering: disabled
Dizplay Incremental HMezsszages: disabled

ew Source:
Verilog Module or gate.w

< Back][Einizh] ’ Lancel

Figure 7: New Project Information window(snapshot from Xilinx ISE software)

Once you click on Finish, the source file will be displayed in the sources window in the Project
Navigator (Figure 1).

If a source has to be removed, just right click on the source file in the Sources in Project
window in the Project Navigator and select Remove in that. Then select Project -> Delete

Implementation Data from the Project Navigator menu bar to remove any related files.

3.3 Editing the Verilog source file

The source file will now be displayed in the Project Navigator window (Figure 8). The source
file window can be used as a text editor to make any necessary changes to the source file. All

the input/output pins will be displayed. Save your Verilog program periodically by selecting the
File->Save from the menu. You can also edit Verilog programs in any text editor and add them
to the project directory using “Add Copy Source”.

E ISE Project Navigator {(M.53d) - C:\,Documents and Settings'Administrator',My Documents',School'Digital Circuits’ labi Xilinz =S
File Edt Yiew Project Source Process Tools Window Layout Help ;lﬂl EI
ID3E@ e nixwallrrEa ~RAIEE0lLe]lr = L]0
Design 0% & 1 ‘timescale 1ns / 1ps
g Yiew: (v tl\}}lmplementatlon(‘ﬁﬂmulatlon = 2 SIS ESEEESSS PRSP EEE SRR EET AR
Hi h | f— 3 /4 Cowmpany:
CE' :Ierarc ¥ 4 // Engineer:
5.EJ , - =] or_gate - 5 /F
— | B &3 xc3s50-Spaz0s & // Create Date: 16:25:55 05/27/2010
e s:m a_gate (o_gate.v) 7 // Design Name:
E =] a // Module Name: o_gate
- — g // Project Mame:
A 10 // Target Devices:
11 /4 Tool versions:
P g e
= 1z // Description:
= Gd e
- % 14 // Dependencies:
15 //
— 16 // Revision:
w0 Mo Processes Running 17 // Revision 0.01 - File Created
— 15 ¢/ Additional Comments:
%rt Processes: o_gate | 19 7/
E{: E Design Summary/Reparts 20 SASEEAEESS SRS SRS SRS ES RPN
Sl le>8 Deesign Lktilities z1 module o gate|
Igi: -- User Canstraints 22 inpuE R
A -- PAC) synthesize - %57 23 input b,
T | & P2 Implement Design 24 output =z
~ @) Generate Programming File 25 i
+- | Configure Target Device 26 |
Analyze Design Using ChipScope)
28 endwodule
Z9
T s
L‘E Start B3 Design | "] Files | E Librariesl l E ISE Design Suite InfoCenter = Design Summary | @ o_gate.v* @J
Console +0&8 x
Launching Design Swmmary/Report Viewer... ;I
Frarted : "Launching ISE Text Editor to edit o_gate.wv".
N o

Console @ Errars |_5 Warnings | P4 Findin Files Resulks

Ln 26 Col 1 Werilog

Figure 8: Verilog Source code editor window in the Project Navigator (from Xilinx ISE software)
e Adding Logic in the generated Verilog Source code template:

A brief Verilog Tutorial is available in Appendix-A. Hence, the language syntax and
construction of logic equations can be referred to Appendix-A.

The Verilog source code template generated shows the module name, the list of ports
and also the declarations (input/output) for each port. Combinational logic code can be
added to the verilog code after the declarations and before the endmodaule line.

For example, an output z in an OR gate with inputs a and b can be described as,

assignz=a [b;
Remember that the names are case sensitive.

e Other constructs for modeling the logic function:

A given logic function can be modeled in many ways in verilog. Here is another example
in which the logic function, is implemented as a truth table using a case statement:

module or_gate(a,b,z);

input a;
input b;
output z;
reg z;
always @(a or b)
begin
case ({a,b})
00: z=1'b0;
01:z=1'b1;
10: z=1'b1;
11:z=1'b1;
endcase
end
endmodule

Suppose we want to describe an OR gate. It can be done using the logic equation as shown in
Figure 9a or using the case statement (describing the truth table) as shown in Figure 9b. These
are just two example constructs to design a logic function. Verilog offers numerous such
constructs to efficiently model designs. A brief tutorial of Verilog is available in Appendix-A.

module or gate(a b, z);
input a;
input h;
output =:

assign 2 = a | hd

endmodule

[T e e T B R

Figure 9: OR gate description using assign statement (snapshot from Xilinx ISE software)

1= module or gatela,b,z);
2 input &

3 input b:

4 output =;

5

G reg =;

T

= alwvays [(a or h)
g begin

10

11 case ({a,b})
12

13 ood: z = 1'b0;
14 01: =z = 1'b1l;
15 10: z = 1'hi;
16 11: =z = 1'hi;
17 endoase

18

18 enc

=0 endmodule

21

|

‘ or_gate * or_th ||.® Intitled

Figure 10: OR gate description using case statement (from Xilinx ISE software)

4. Synthesis and Implementation of the Design

The design has to be synthesized and implemented before it can be checked for correctness, by
running functional simulation or downloaded onto the prototyping board. With the top-level
Verilog file opened (can be done by double-clicking that file) in the HDL editor window in the
right half of the Project Navigator, and the view of the project being in the Module view , the
implement design option can be seen in the process view. Design entry utilities and Generate
Programming File options can also be seen in the process view. The former can be used to
include user constraints, if any and the latter will be discussed later.

To synthesize the design, double click on the Synthesize Design option in the Processes
window.

To implement the design, double click the Implement design option in the Processes window.
It will go through steps like Translate, Map and Place & Route. If any of these steps could not
be done or done with errors, it will place a X mark in front of that, otherwise a tick mark will be
placed after each of them to indicate the successful completion. If everything is done
successfully, a tick mark will be placed before the Implement Design option. If there are

warnings, one can see ¥ mark in front of the option indicating that there are some warnings.
One can look at the warnings or errors in the Console window present at the bottom of the
Navigator window. Every time the design file is saved; all these marks disappear asking for a
fresh compilation.

5 ISE Project Navigator {(M.53d) - C:\ Documents and Settings' AdministratorMy Documents' School'Digital Circuits' |abt Xilin= = | = 5'
File Edit “iew Project Source Process Tools Window Layout Help :Iﬂél
IC3da s bbx[walfrBE 2R HEE0[LR]r L0
Design <05 x 1 timescale 1lns / 1ps
i wigw: & {8k Implementation M Smulation R 2 SESEPASEEIER RSP SSEEES S ESE SRS SRS AR SRS EAAS LRSS
o H | — 3 // Companv:
&l :Ierarc Y 4 // Engineer:
E‘EJ i =] or_gate - 5 //
— o XC3E50-5pG208 6 // Create Date: 16:25:55 05/27/2010
[ﬁﬁ 0_gate (0_gate.v) 7 /¢ Design Name:
= = g // Module Name: o_gate
% — 9 /¢ Project Name:
A 10 // Target Devices:
: % 11 /¢ Tool versions:
E 1z // Description:
— * 13/
B % 14 // Dependencies:
15 //
— 16 // Revision:
| T2 Mo Processes Running 17 // Revision 0.01 - File Created
— 18 /¢ ddditional Comments:
l%ft Processes: o_gate I;I 19
= y User Constraints 20 SASASSEES ST SRS SRR RSP EE GRS LSS PSSR ARSI
e 15 21 module o_gate!
?t i akic 22 input a,
— Wiew Technology Scheratic 23 input b,
n = Check Syntax 24 output =
P Generate Post-Synthesis Sim... 25) :
HO Implement Design 26 =assign & = a | hb;
2D Translate 27
. Map 28 endwodule
Place & Route 29
: Generake Programming File ﬂ ‘I I _’I
0 4 areFim e Tovmmk P s
'95 Start B8 Design | ™) Files | IE Librariasl l E ISE Design Suite InfoCenter = Design Surnmary | o_gate.v @J
Console +08 x
Launching Design Summary/Report Viewer... ;I
Started : "Launching ISE Text Editor to edit o_gate.v".
K I ;Ij

Consale @ Errars |& warnings | (% Find in Files Results

Ln 26 Col 18 verilog

Figure 11: Implementing the Design (snapshot from Xilinx ISE software)

The schematic diagram of the synthesized verilog code can be viewed by double clicking View
RTL Schematic under Synthesize-XST menu in the Process Window. This would be a handy way
to debug the code if the output is not meeting our specifications in the proto type board.

By double clicking it opens the top level module showing only input(s) and output(s) as shown
below.

=S Xilinx - ISE - C:\NivashATAlnew_lablsample_exerciseslo_gatelo_gate.ise - [o_gate.ngr]
File Edit Wiew Project Source Process Window Help =& 3X)

DR L BEX oo ALPXHM RA|[HimBE DOiLo e i iV i FE EUNATL OO
B I 8> <P osUa |3 | A AR B 0L O o= - D

o_gate

=g Sources | g Snapshots | [Libraries | WS Design

No flow available.

Ef Processes

% Design Summary | [5] o_gate.ngr

Design Dbjects of Properties
Top Level Symbol No obiject is selected
Marne Type Name Value
o_gate Instance

[5] Corsole | @) Emors | g ‘wWamings | &) Tel Console | [gg Find inFiles | [View by Category | B View by Name

[12,164]

Figure 12: Top Level Hierarchy of the design

By double clicking the rectangle, it opens the realized internal logic as shown

below.
ivas hATA\new_lablsampls ercisesio_gatelo_gate.ise

L Fle Edt Wiew Project Source Proress Window Help (I [X]
OFEHI L:iBBX oo Qi XHAM B (|AimE DD LK LMN B MEQIEFE @ BAALAIOO
AT Atih KED | AARHERD ARG

o_gate

g Sources [Snapshots |® Libraries W8 Design

No flow available.

' Processes K
I Design Summary B o_gate.ngr
Design Objects of Properties
o_gate Mo obiject is selected
Mame Type A0 | Name Walue
z Fin
z_imp_z1 Instance v

[Z] Conzole | @)Emors | o\ Warnings | (Gl TelConsole | [pg Find inFiles | [View by Category | EH View by Name

[612,336]

Figure 13: Realized logic by the XilinxISE for the verilog code

5. Functional Simulation of Combinational Designs
5.1 Adding the test vectors

To check the functionality of a design, we have to apply test vectors and simulate the circuit.
In order to apply test vectors, a test bench file is written. Essentially it will supply all the
inputs to the module designed and will check the outputs of the module. Example: For the 2
input OR Gate, the steps to generate the test bench is as follows:

In the Sources window (top left corner) right click on the file that you want to generate the
test bench for and select ‘New Source’

Provide a name for the test bench in the file name text box and select ‘Verilog test fixture’
among the file types in the list on the right side as shown in figure 11.

= New Source Wizard - Select Source Type

EMM File

q IP [Coregen & Architecture YWizard)
%] MEM File

| Schematic

e] Implemnentation Constraints File
State Diagram File name:

Uszer Document |D_Elatﬂ_tb.\r1 |
Y| Werilog Module Lot

m VHOL Module |E:"-.Ni\-'ash'\T.-'-‘-.'mew_lal:u'xsampIe_e:-:en:ises'\n_gate | E]

| F]YHDL Package
) WHOL Test Berch

Add to project

< Back Mest > l ’ Cancel

Figure 14: Adding test vectors to the design (snapshot from Xilinx ISE software)

Click on ‘Next’ to proceed. In the next window select the source file with which you want to
associate the test bench.

E= New Source Wizard - Associate Source ZII:.F>__<|

|Seleu:t a zourze with which to agsociate the new source. |

¢ Back] I Memt >] [Cancel

Figure 15: Associating a module to a testbench (snapshot from Xilinx ISE software)

Click on Next to proceed. In the next window click on Finish. You will now be provided with a

template for your test bench. If it does not open automatically click the radio button next to
Simulation .

=5 ISE Project Mavigator (M.53d) - C:\Documents
File Edit Miew Project So Process Tools

IREEEID r EIEEICE:
Ciesign / =+ [0 &8 X

Wigw (% Implementation pg Simulation
Hierarchey
> or_gake

£l B xc3s50-Spg20s

E|§|:||E:@|:l

You should now be able to view your test bench template. The code generated would be
something like this:

module o_gate_tb_v;

// Inputs

reg a;

Administrator
Line

reg b;

// Outputs

wire z;

// Instantiate the Unit Under Test (UUT)
o_gate uut (

-a(a),

-b(b),

.z(z)

);

initial begin

// Initialize Inputs

// Wait 100 ns for global reset to finish

#100;

// Add stimulus here

end

endmodule

The Xilinx tool detects the inputs and outputs of the module that you are going to test and

assigns them initial values. In order to test the gate completely we shall provide all the different
input combinations. ‘#100’ is the time delay for which the input has to maintain the current
value. After 100 units of time have elapsed the next set of values can be assign to the inputs.

Complete the test bench as shown below:

module o_gate_tb_v;

// Inputs
reg a;

reg b;

// Outputs

wire z;

// Instantiate the Unit Under Test (UUT)
o_gate uut (

-a(a),

.b(b),

.z(z)
)i

initial begin

// Initialize Inputs

// Wait 100 ns for global reset to finish

#100;

// Wait 100 ns for global reset to finish

#100;

// Wait 100 ns for global reset to finish

#100;

// Wait 100 ns for global reset to finish
#100;

end

endmodule

Save your test bench file using the File menu.

5.2 Simulating and Viewing the Output Waveforms

Now under the Processes window (making sure that the testbench file in the Sources window
is selected) expand the ModelSim simulator Tab by clicking on the add sign next to it. Double
Click on Simulate Behavioral Model. You will probably receive a complier error. This is nothing

to worry about —answer “No” when asked if you wish to abort simulation. This should cause
ModelSim to open. Wait for it to complete execution. If you wish to not receive the compiler
error, right click on Simulate Behavioral Model and select process properties. Mark the
checkbox next to “Ignore Pre-Complied Library Warning Check”.

E ISE Project Navigator (M.53d) - C: Documents and Settings' Administrator',My Documents'School'Digital CircuitstlabiXiling ===
File Edit wiew Project Source Process Tools Window Layout Help ;Iﬂﬁl
ID2Ea] .]l% Xoa|slr-srpErRAIEEDClLe]e = L][9

Design <08 X z5 module o_gate_th; ;I

View:]:h:i} Implementatior((:' ﬁ Sirnulation F 26
EE' Eehavioral ~—~ | — 27 /¢ Inputs
28 reg a:

5'5 Higrarchy | - 29 reg b:

—= > =] or_gate a0

i1 | B £ xcasSo-speEes 31 // outputs

= ‘m L] 32 wire =;

g =] .

A 34 /¢ Instantiate the Unit Under Test (UUT)

- o 35 o_gate uut |

- 36 ~afal,

= o T bibl,

- % 38 .ziz)

39 1:

— 40

p | B2 Mo Processes Running 41 initial hegin

— 43 /¢ Initialize Inputs

= Processes:o_gate_tb 43 a = 0:

Ert Eg TModelSim Simnula a4 h = 0;:

o W iSimulate Beh: 45

E.,rt 15 /4 Wait 100 ns for global reset to finish

- 47 #100; —

(] 18 a = 0:

49 h = 1;

50

51 /¢ Wait 100 ns for global resec to finish

52 #100;

53 a = 1; -
T _’l_I

E‘ Start BT Design I U Files I Ry Librar\esl l@ 1SE Design Suite InfoCenter] A2 Design Summary] o_gate.v | o_gate_thy [

Cansole +0 8 X
Started : "Launching ISE Text Editor to edit o_gate.w". ;l
Started : "Launching ISE Text Editor to edit o_gate th.v".

-
4| | >

Consale @ Errors |_$ Warnings | [Findin Files Results

Ln 25 Col 1 Verilog
Figure 16: Simulating the design (snapshot from Xilinx ISE software)

5.3 Saving the simulation results

To save the simulation results, Go to the waveform window of the Modelsim simulator, Click on
File -> Print to Postscript -> give desired filename and location.

Note that by default, the waveform is “zoomed in” to the nanosecond level. Use the zoom
controls to display the entire waveform.

Else a normal print screen option can be used on the waveform window and subsequently
stored in Paint.

Administrator
Oval

Administrator
Oval

Administrator
Oval

ﬁ wave - default

File Edit WYiew Insert Format Tools Window

=Es&: B

SEQM | 4 BFoOREENE BR e R ([N o Qe &

MNow 1000000 ps

Cursar 1

‘D ps to 1050 ns

|an 1us Delta: 0

Figure 17: Behavioral Simulation output Waveform (Snapshot from ModelSim)

For taking printouts for the lab reports, convert the black background to white in Tools -> Edit
Preferences. Then click Wave Windows -> Wave Background attribute.

I=;|I Preferences

By \Window] By Mame]
— Wwindow List

[ataflow windows

Lizt windows

I ain Window

M emary Windows
Active Process Window
Objects Window
Source Windows
Structure \Windows
Locals Window

wave wWindows Caolar Scheme

crzorDelkaColor
faregraund
anidColor
selectBackground
selectFareground
textColor
timeCaolar
wecharCalar

 Palette

Font

Jit5 Sans Seiift 8
Sample Text 01234567830

I:hcu:se...l

Ok Apply Cancel

Figure 18: Changing Waveform Background in ModelSim

6. Preparing and downloading bitstream file for the Spartan FPGA:

A bitstream file needs to be prepared for each design and downloaded onto the Basys2
prototyping board. This is done as follows:

e User Constraint File:

o In order to test the design in the Basys2 board, the inputs need to be connected to
the switches/buttons on the board and the outputs need to be connected to the
onboard LED’s.

o To create the constraint file, ensure that the implementation radio button is
selected and your verilog module is highlighted. In the processes window, expand
User Constraints and double click on I/O Pin Planning (Plan Ahead) Post Synthesis.
Answer “Yes” when asked if you want to create the UCF file. This will create the
constraint file but also open the Plan Ahead application. It is beyond the scope of
this tutorial to cover Plan Ahead. Wait for the Plan Ahead to fully open, then close
it. You will now see the .ucf file in your hierarchy. Double click it to edit the file.

o Assign pin numbers to the input and output pins in the Verilog design file using a
“User Constraint File(ucf file)”. The pin numbers can be assigned by looking at
section 7 of this tutorial. Then save the design file and implement the design again.
Note that you can assign pin numbers only to top-level Verilog file. Then the
Project Navigator window looks as shown in Figure 13.

E ISE Project Navigator {(M.53d) - C:\Documents and Settings' AdministratoriMy Documents' School',Digital Circuits'labXili &1
%% File Edit Wiew Project Source Process Tools Window Layout Help ;lﬂl 1'
ID2Eg s coxewal il xmm2alAlzaazlsele L]0
Design <O & X | B Design Qverview = o_gate Project Status =
\D'ﬁ & {0f mplementation (M Simulati - ~[8 summery
. ML SN (2] ETmdEm 6 @ IOB Properties Project File: or_gate. xise Parser Errors: Mo Errors
EE' H.ierarchy | E Module Level Utiization Module Name: a_gate Implementation State: |Placed and
B;J .31 or_gate O @ Tirning Constraints Routed
a =9 - Y Pinaut Report:
—| =i xC550-5pg208 (%] B ek P Target Device: | xc3sS0-5pqz08 «Errors: Mo Errors
o m;; o_gate (o_gate.v) - [2] Clack Report
o Z oa G Static Timing Product Yersion: |I5E 12,1 *Warnings: Mo Warnings
=l % £l Errors and Warnings Design Goal: Balanced * Routing Al Signals
L) -+ [£] Parser I‘flessages Results: Complebely
3 N E Syrkhesis Messages Routed
@ Translation Messages - —
= - @ Map Mossages Design Strategy: | zilinx Default * Timing
- P 2 unlocked) Constraints:
-~ [&] Place and Route Messages
@ Timing Messages Environment: System Settings *Final Timing 0 (Timing |-
[Bitgen Messages e Score: Report)
. - [2] All Implementation Messages
p | T2 Mo Processes Running £} Detailed Reparts
% Processes: o_gate I: """ [2) Synthesis Repart Device Utilization Summary -1
+ = - I i
= £, Design Summary(Reports - ogic Utilization sed | Available | Utilization | Note(s
a yiRzp E I:a”i'atm”fewt Logic Utilizati Used | available |Utilization | Not
Design Uitiities Design Properties Murnber of 4 input LUTs 1 1,536 1%
User Constraints _—
- . - [] Enable Message Filtering Murber of occupied Slices 1 768 1%
Create Timing Constraints (ptional Design Summary Contents P :
1/ Pin Planning (Planahead). . - [show Clack Report Mumber of Slices containing only 1 1 100%
{I/O Pin Planning (PlanAhead... ~ [Show Failing Constraints related logic
Flnn.rplan Aresf10fLogic (Pla E g:sx \é\:raorrnslngs Mumber of Slices containing o 1 0%
B P Synthesize - %5T unrelated logic
=28 Implement Design
Q P g - Total Mumber of 4 input LUTs 1 1,536 1%
- @2 Generate Programming File —
B @ Configure Target Device Murnber of bonded [OBs 3 124 2%
A - - : =
E Start B Design |] Files I E Lihrariasl l E 1SE Design Suite InfoCenter | = Design Summarty B8
Console +08 X

DINFO:HDLCompiler:1062 - Parsing Verilog file "C:/Documents and Settings/Administrator/My Documents/School/Digital Circuit,sf';l
INFO:ProjectMgme: 656 — Parsing design hierarchy completed successfully.

Launching Design Summary/Report Viewer...
-
4| I *

|§| Console m Errors | g Warnings | (p4 Find in Files Results

Figure 19: User Constraint File (snapshot from Xilinx ISE software)

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

e Forthe OR_GATE example, the user constraint file used is as follows:

#Balls P11 and L3 of FPGA are connected to SWO0 and SW1 in Basys2 Board and
Ball M5 of FPGA is connected to LEDO in Basys2 Board.

OR Gate Constraint list - Comment
NET a LOC="P11";

NET b LOC ="L3";

NET z LOC = "M5";

e In the Sources View, choose the main design file and in the Process View -> User
Constraints —> Edit Constraints option, add the user constraint file for the design.

e Then, in the Process View window (left-bottom), double click on the ‘Generate
Programming file’.

6.1 Programming the Device

Once the programming file (bit stream file) is generated, the file has to be downloaded to the
Spartan3 device. This is done by using another application Adept provided by Digilent Inc.,

Connect the Demo board to the PC using the USB extension cable. Connect the USB-Type A
connector to PC and Mini-AB end to the demo board.

Click and Go to Start -> All Programs -> Digilent -> Adept -> Adept

/\ Digilent Adept

BASYS 2 & Connect: !Basysz v}
Basysz - 250

Product:

Config [Test | Register /O | File /0 | /O Ex | Settings |

FPGA || | —
xcasaso || | v| [Browse..] | Program

PROM - [
XKCF025 | b |Browse...| ¥ogram

| Initislize Chain |

| Board information loaded. ~

| Found device ID: 5045093

Found device ID: 11c1a093

Initialization Complete.
Device 1: XC35250E
Device 2: XCF025

[l

Figure 20: Adept Opening screen after connecting FPGA board

If the board is working properly it should show the above information which is highlighted by
the red color box. If it is not showing there might be problems with the board and/or the cable.

To download the program, click on Browse command in the first Row which says FPGA
(XC3S250E). Browse to the project folder and choose the corresponding bit file as shown below
and click open.

/% Digilent Adept

BASYS E I Conneck: |Basy52

Produck: Basysz - 250

Config | Test | Register l/O | File IJO | I/O Ex | Settings |

Look jr: | () Labd

) _nga
; E’ I _xmsgs
by Becent [D)mst

Documents
r

by Documents

by Computer

File narme; |Ia|:|4 b | Open

Files of lype: | FPGA Config Fies [* bit: *svf) v | conce |

My Network []0pen as read-only

Figure 21: Choosing the bit stream file to download

Once this is done, a warning window will pop up if the clock is set to CCLK which can be closed
by clicking Yes as shown below. Or it can be fixed by setting Clock source to JTAG Clock in the
Synthesize setting in XilinxISE.

Startup clock For this File is '"CCLE' instead of 'JTAG CLE'. Problems will likely occur,
Associake config file with device amywayy

L ;es J []

Figure 22: Warning about CCLK and JTAG CLK

Now click on the Program button to program the FPGA and if it successfully programming the
following information should show up in the status window.

£% Digilent Adept

T™
BASYS 2 *l

Produck: Baswsz - 250

Config | Test | Register IJO | File /0 | 1/0 Ex | Settings

CE 4 o) Comm

Initialize Chain

Test Stopped.

Set Config file for KC33250E: "Hi\Spring20104Tanew _lablsample_exercises\Lab4tlab4. bit"
Preparing to program XC”35250E. ..

Programning...

Verifving programming of device. ..

Programming Successul, |

(3

4

Figure 23: Showing the programming status

Ensure that the “Programming Successful” message appears in the message window.

7. Testing a Digital Logic Circuit

Testing a downloaded design requires connecting the inputs of the design to switches or ports
and the outputs of the design to LEDs or 7-segment displays. In case of sequential circuits, the
clock input(s) must also be connected to clock sources. These inputs and outputs can be
connected to appropriately on the Digital Lab workbench.

The Basys2 Board used in the Digital Circuits lab has the following features which can be used to
test the digital logic in the design:

1. 8 Switches -- which can be used to drive up to 8 inputs

2. 4 Buttons -- which can be used as reset signals (or) input switches

3. 8 LEDs -- which can be used to display up to 8 design outputs

4. 4 Seven segment displays -- which can be used to display four digits of

information in the display on the board

Full Speed Platform Settable Clock
USB2 Port +—— Flash Source
{(JTAG and data transfers) {caonfig ROM) {25/ 50/ 100 MHz)
TA
ofpas | |ime |

Xilinx Spartan3E-100 CP132

[:’ é F%JWEFE

ﬂ E E ﬂ P&i2 WiEA Port Fmod Connectors
12 Devices Port

Figure 24: Basys2 Architecture (Source: www.digitalinc.com)

In order to use the respective input/output device on the board, the pin number of the device
must be connected properly to the design’s input/output. In the Basys2 board, the pin number
of these inputs/outputs is as follows:

FPGA Ball
Input (To be used in the ucf
file)
| swo | pin# P11
oswi | pin# L3
Switch
osw2 | pin# K3
L osw3 pin# B4

L oswa | pin# G3

L osws | pin# F3

| swe | pin# E2

L osw7 pin# N3

| BINO | pin# G12

| BIN1I pin# C11

Button

| BTN2 pin# M4

| BIN3 | pin# A7

Yet to Change FPGA Pin

Input (To be used in the ucf
file)
Clock | GLK1 | pin# P77
(for sequential designs ‘GCLKZ ‘ pin# P182
FPGA Pin
Output (To be used in the ucf
file)

| LDO | pin# M5
| LD1 | pin# M11

| LD2 | pin# P7

| LD3 | pin# P6

LED

| LD4 | pin# N5

| LD5 | pin# N4

| LD6 | pin# P4

| LD7 | Pin# G1

7.1 Observing outputs using the on-board LEDs and Seven Segment Displays

The Basys2 boards have four on-board 7-segment displays (see Figure 19) that is connected to
the corresponding on-board Spartan FPGA chip. This display can be used to observe the outputs
of your design without using any additional wires if the design conforms to the pin assignments
for the on-board 7-segment display. The figure below shows the 7-segment display with the

conventional labeling of individual segments.

A1 oI T o0
£ U iC 3130 10

Figure 25: 7 Segment Display

The Basys2 board contains a 4-digit common anode seven-segment LED display. The display is
multiplexed, so only seven cathode signals(CA,CB,CC,CD,CE,CF,CG) exist to drive all 28 segments
in the display. Four digit-enable signals(AN1,AN2,AN3,AN4) drive the common anodes, and
these signals determine which digit the cathode signals illuminate.

FPGA Pin
Output (To be used in the ucf
file)
LED Anode | ANO | pin# F12
(To be used to ‘ AN1 ‘ pin#t J12
Multiplex between -
Four Displays) ‘ AN2 ‘ pin# M13
| AN3 | pin# K14
LED Cathode | CA | pin# L14
B | pin# H12
| cc | pin# N14
| o | pin# N11
| CE | pin# P12
. CF | pin# L13
G| pin# M12
. oP | Pin# N13

This connection scheme creates a multiplexed display, where driving the anode signals and
corresponding cathode patterns of each digit in a repeating, continuous succession can create
the appearance of a 4-digit display. Each of the four digits will appear bright and continuously
illuminated if the digit enable signals are driven low once every 1 to 16ms (for a refresh
frequency of 1KHz to 60Hz).

The Seven segment display timing to drive all the four displays is shown below:

AN

ANZ2

AN3

AN4

Refresh period = 1ms to 16ms
a g

: ' Digit period = Refresh / 4

__J :
\/

Figure 26: Timing diagram for Multiplexed Seven Segment Displays

8. Design and Simulation of Sequential Circuits using Verilog HDL

The procedure to create Verilog design files for sequential circuits in Xilinx ISE is the same as
that for combinational circuits. The main difference between combinational and sequential
designs is the presence of flip-flops (registered outputs or nodes in the Declaration section of a
sequential design).

8.1 Design of Sequential Circuits

For large, complex state machines it is easier to specify them as programs. A sequential circuit
can be described either as a procedural block or a state machine in Verilog.

1. A D-flip with asynchronous reset can be modeled as a Procedural block as follows:

data ——» —
D - FF
with
Asynch.
reset
clock

oset 1

Figure 27: D-Flip flop with Asynchronous Reset

module dff_async (data, clock, reset, q);
input data, clock, reset;
output g;

reg q;

// logic begins here
always @(posedge clock or negedge reset)
if(reset == 1'b0)
g <=1'b0;
else
g <=data;
endmodule

2. A D-flip with synchronous reset can be modeled as a Procedural block as follows:

0

0 — Flipflop
with
reset Synch.
Reset

:In:k—>

Figure 28: D-Flip flop with Synchronous Reset

module dff_sync (data, clock, reset, q);
input data, clock, reset;
output q;

reg q;

// logic begins here
always @(posedge clock)
if(reset == 1'b0)
g <=1'b0;
else
g <= data;
endmodule

8.2 Simulation of sequential designs

Except for the additional clock signal, simulation of sequential designs can be done using
test_bench in the same way it was done for combinatorial circuits. The clock signal can be
generated in the test bench using a simple initial block as follows:

module test_bench(clk)
output clk;
reg clk;

initial begin
clk =0;
forever begin
#5 clk = ~clk; //Time period of the clock is 10 time units.
end

// rest of the logic

endmodule

9. Hierarchical Circuit Design Using Modules

It is always a good practice to keep a design modular and hierarchical. This is important for
designs of moderate to high complexity. [Refer to section on hierarchies and Instantiation in
the Verilog tutorial in Appendix-A]. Often, you will use a circuit (module) over and over again.
Instead of creating these modules every time you need them, it would be more efficient to
make a cell or module out of them. You can then use this module every time to need it by
instantiating the module in your circuit. Verilog supports hierarchical design by creating
instances of other modules that can be used in a design. In the example depicted in Figure 19, a
4-bit equivalence circuit is designed using 1-bit equivalence circuit modules.

ai b3 aZ b2 al b&f ald b0
P q P q P q p q P q
; eqgiiv equiv ety eqitiv
equ 3 2 1 0
r r r r r
I |

eqd

Figure 29: Hierarchical circuit design example: 4-bit equivalence circuit

e Module Definition: A module (functional block) definition is specified in a file, separate
from the top-level design file using the module.

module equiv (p,q,r)
input p;

input qg;

output r;

assignr="(p " q); //equivalence function is xnor function.

endmodule

e Module Usage: A design using a module includes a declaration of module interface and
instantiation of each module in the Declaration section. Instantiation of module “equiv”
in the 4-bit equivalence circuit shown in Figure.21 can be done as follows:

module equivabit(a3,b3,a2,b2,al1,b1,a0,b0,eq4)
input a3,b3,a2,b2,a1,b1,a0,b0;
output eqd;

equiv eq0(a0,b0,r0);
equiv eql(al,bi,rl);
equiv eq2(a2,b2,r2);
equiv eq3(a3,b3,r3);
assigneqd =r0 &rl1 &r2 &r3;

endmodule

NOTE : For creation of the module, we can either use the design wizard provided by the Xilinx or
create our own.

Appendix-A:

Verilog Hardware Modeling:

This is just an introductory level tutorial to the Verilog language. The reader is
encouraged to go through the following Verilog tutorials to understand the language better:

e http://www-ee.eng.hawaii.edu/~msmith/ASICs/Files/pdf/CH11.pdf
e http://www.asic-world.com/verilog/vbehave.html
e http://www.vol.webnexus.com/ [requires free registration]

1. Module:

A module is the basic building block in Verilog. It is defined as follows:
module <module_name> (<portlist>);

// module components

endmodule

The <module_name> is the type of this module. The <portlist> is the list of connections, or
ports, which allows data to flow into and out of modules of this type.

Verilog models are made up of modules. Modules, in turn, are made of different types of
components. These include

e Parameters

e Nets

e Registers

e Primitives and Instances

e Continuous Assignments
e Procedural Blocks

e Task/Function definitions

2. Ports:
Ports are Verilog structures that pass data between two or more modules. Thus, ports can

be thought of as wires connecting modules. The connections provided by ports can be
either input, output, or bi-directional (inout).

http://www-ee.eng.hawaii.edu/~msmith/ASICs/Files/pdf/CH11.pdf
http://www.asic-world.com/verilog/vbehave.html
http://www.vol.webnexus.com/

module fm@mz ,outl,out? ,@
input inl 5P

output outl,out?;
inout bidi;

Port List

endmodul e

Module instantiations also contain port lists. This is the means of connecting signals in the
parent module with signals in the child module.

module top:

wire sourcel ,source?; Port List
wire sinkl,sink?: /
wire bus:;
foo f@el,snurceE,sﬁﬂcl,siﬂkﬂ@
endmodul e

3. Nets:

Nets are the things that connect model components together. They are usually thought of as
wires in a circuit. Nets are declared in statements like this:

net type [range] [delay3] list of net identifiers ;

Example:
wire wl, w2;

tri [31:0] bus32;
wire wire_number_5 = wire_number_2 & wire_number_3;

4. Registers:

Registers are storage elements. Values are stored in registers in procedural assignment
statements. Registers can be used as the source for a primitive or module instance (i.e. registers
can be connected to input ports), but they cannot be driven in the same way a net can.

Registers are declared in statements like this:
reg [range] list_of register_identifiers ;
Example:

regrl, r2;
reg [31:0] bus32;

javascript:parent.goGlossHash('#instantiation')
http://www.vol.webnexus.com/VOL/c01/v01078.htm#nettype#nettype
http://www.vol.webnexus.com/VOL/c01/v01078.htm#range#range
http://www.vol.webnexus.com/VOL/c01/v01078.htm#delay#delay
http://www.vol.webnexus.com/VOL/c01/v01078.htm#identifiers#identifiers
javascript:parent.dispWindow('v01090r1.htm','net')

5. Operators in Verilog:

Logical, arithmetic and relational operators available in Verilog are described in Table 1.

?7: (conditional) [legal for real; associates right to left (others associate left to right)]
|| (logical or) [A smaller operand is zero-filled from its msb (0-fill); legal for real]

&& (logical and) [0-fill, legal for real]

| (bitwise or) ~| (bitwise nor) [0-fill]

A (bitwise xor) "~ ~* (bitwise xnor, equivalence) [0-fill]

& (bitwise and) ~& (bitwise nand) [0-fill]

== (logical) != (logical) === (case) !== (case) [0-fill, logical versions are legal for real]
< (lt) == (1t or equal) = (gt) == (gt or equal) [0-fill, all arelegal for real]

<< (shift left) == (shift right) [zero fill: no -ve shifts: shift by x or z results in unknown]

+ (addition) - (subtraction) [if any bit is x or z for + - * / % then entire result is unknown]

* (multiply) / (divide) % (modulus) [integer divide truncates fraction; + - */ legal for real]

Verilog Unary Operators:

Operator Name Examples
! logical negation 1123 is 'b0 [0, 1. or x for ambiguous: legal for real]
~ bitwise unary negation ~1'bl0xz is 1'b0lxx
& unary reduction and & 4'b1111 is 1'bl, & 2'bx1 is 1'bx, & 2'bzl is 1'bx
~& unary reduction nand ~& 4'b1111 is 1'b0O, ~& 2'bx1l is 1'bx
| unary reduction or Note:
~| unary reduction nor Reduction is performed left (first bit) to right
" unary reduction xor Beware of the non-associative reduction operators
~% M~ unary reduction xnor z is treated as x for all unary operators
+ unary plus +2'bxz is +2'bxz [+m is the same as m: legal for real]
- unary minus -2'bxz is x [-m is unary minus m: legal for real]

Source: ASIC Design by Smith (http://www-ee.eng.hawaii.edu/~msmith/ASICs/Files/pdf/CH11.3.pdf)

Table 1 Verilog Operators

6.. Continuous assignments:

Continuous assignments are sometimes known as data flow statements because they describe
how data moves from one place, either a net or register, to another. They are usually thought

http://www-ee.eng.hawaii.edu/~msmith/ASICs/Files/pdf/CH11.3.pdf

of as representing combinational logic. In general, any logic functionality which can be
implemented by means of a continuous assignment can also be implemented using primitive
instances.
A continuous assignment looks like this:
assign [delay3] list_of net_assignments ;
Examples:
assign wl =w2 & w3;

assign #1 mynet = enable; // mynet is assigned the value after 1 time unit.

7. Procedural Blocks:

Procedural blocks are the part of the language which represents sequential behavior. A module
can have as many procedural blocks as necessary. These blocks are sequences of executable
statements. The statements in each block are executed sequentially, but the blocks themselves
are concurrent and asynchronous to other blocks.

There are two types of procedural blocks, initial blocks and always blocks.

initial <statement> always <statement>

There may be many initial and always blocks in a module. Since there may be many modules in
a model, there may be many initial and always blocks in the entire model. All initial and always
blocks contain a single statement, which may be a compound statement, e.g.

initial
begin statementl ; statement2 ; ... end

a. Initial Block:

All initial blocks begin at time 0 and execute the initial statement. Because the
statement may be a compound statement, this may entail executing lots of statements.
There may be time or event controls, as well as all of the control constructs in the
language. As a result, an initial block may cause activity to occur throughout the entire
simulation of the model.

When the initial statement finishes execution, the initial block terminates. If the initial
statement is a compound statement, then the statement finishes after its last statement

finishes.

Example:

initial x = 0; // a simple initialization

javascript:parent.dispWindow('v01114r2.htm','delay3')
javascript:parent.goGlossHash('#initial')
javascript:parent.goGlossHash('#always')
javascript:parent.goGlossHash('#event')

initial begin

x=1; // an initialization
y = f(x);

#1x=0; // a value change 1 time unit later
y = f(x);

end

b. Always Block:

Always blocks also begin at time 0. The only difference between an always block and an
initial block is that when the always statement finishes execution, it starts executing
again. Note that if there is no time or event control in the always block, simulation time
can never advance beyond time 0. Example,

always
#10 clock = ~clock;

8. Behavioral modeling constructs:

a. Conditional if-else construct:

The if - else statement controls the execution of other statements in a
procedural block.

Syntax:
if (condition)
statements;

if (condition)
statements;

else
statements;

if (condition)
statements;

else if (condition)
statements;

statements;

Example:
// Simple if statement
if (enable)
q<=d;

// One else statement
if (reset == 1'b1)
q<=0;
else
q<=d;

// Nested if-else-if statements

if (reset == 1'b0)
counter <= 4'b0000;

else if (enable == 1'b1 && up_en ==1'b1)
counter <= counter + 1'b1;

else if (enable == 1'b1 && down_en == 1'b1);
counter <= counter - 1'b0;

else
counter <= counter; // Redundant code

b. Case statement:

The case statement compares an expression to a series of cases and executes the
statement or statement group associated with the first matching case. Case statement
supports single or multiple statements. Multiple statements can be grouped using begin
and end keywords.

Syntax:

case (<expression>)
<casel> : <statement>
<case2> : <statement>
default : <statement>
endcase

Example:

module mux (a,b,c,d,sel,y);

input a, b, c, d;

input [1:0] sel;

outputy;

regy;

always @ (aorborcordorsel)

case (sel)
a;
b;
C,

3:y=d;

default : Sdisplay("Error in SEL");
endcase

N = O

< < <
]

endmodule

9. Module instantiations and hierarchies:

Verilog allows you to represent the hierarchy of a design. A more common way of depicting
hierarchical relationships is:

javascript:parent.goGlossHash('#hierarchy')

system

We say that a parent instantiates a child module. That is, it creates an instance of it to be a sub
model of the parent. In this example,

system instantiates comp_1, comp_2
comp_2 instantiates sub_3

Modules in a hierarchy have both a type and a name. Module types are defined in Verilog.
There can be many module instances of the same type of module in a single hierarchy. The
module definition by itself does not create a module. Modules are created by being
instantiated in another module, like this:

module <module_name_1> (<portlist>);
<module_name_2> <instance_name> (<portlist>);

endmodule

top
top

typel type 2

childA childB !
pel
leaf3 nodel
type 3

leaf1 I leaf2
type3 type 3
module top;
typel chi L :ffport. | "indicates a port list

L3 fArhich will be explained later

module type2{poyt=s...});
type3 leaf3(port=...});
typel nodel{port=s...};
endmodul e

odule type3{ports...
ez ot instantiate any other modules

aendmodul e

Appendix B — Downloading and Installing Xilinx ISE Webpack (Student Version)

> Navigate to http://www.xilinx.com/univ/ . In the “students” section click on Download free
ISE® WebPACK™ FPGA design tools.

,"_'_‘ Xilinx University Program - Windows Internet Explorer

@:-:v Ii: RiEEp s e eilinee, comyfunie j B || X I"lGU[

File Edit ‘iew Favoribes Tools Help
x Go gle ‘ eilir j-‘l Search « 4

.7 Favarites | 9 @ suggested Sikes ~ @ | Web Slice Gallery -

@ I:EIv glv % Bookmarks ~

"? Check - Ca_al Translate

i: ilimee University Program

- i - L -) evelopers Worksnop
to our full suite of software tools and special academic pricing for university boards. > Hew Workshops
Announced
> Embedded Linux &n
Professors

MicroBlaze Workshop
1 1
Keep your education and research labs up-to-date with the latest FPGA technology. ; Ei%ﬁ:';?:;;;mksmu
¥l ¥l

> dilinx Development Tools > Workshop Schedule

» University Boards
» Third Party Alliance Offerinas

Academic Segments

Become a member (sign-up) to take advantage of Xilinx product offerings. Digital Logic Design
Embedded Systems
* Special Academic pricing for XUP Products L

* Access the latest Xilinx technology through the Donation Program

Aftend a Professor Workshops to get started with the |atest Xilinx technology
» Access workshop materials for use in education

Digital Signal Processing

>

W

Access Teaching Materials for use in your course work
Get help by accessing online Support Resources

W

Students
Work from home with the latest dling development tools.

» Download free |ISE® WebPACK™ FPGA design tools

» Get started by accessing online Support Resources
* Career opporunities at Xilim: Morth America and International

http://www.xilinx.com/univ/
http://www.xilinx.com/tools/webpack.htm
Administrator
Line

> Click on Download ISE WebPACK software for Windows and Linux

» Click on the appropriate file for your system. Most often, this will be 32bit/64bit Windows

/2 xilinx: Downloads - Windows Internet Explorer

@ - Ii: hikbps vy iling:, comy support download)inde:, htrm j |@ |E |E Ié‘ Gom

File Edit Miew Faworites Tools Help

x GODEIQ ‘ wilin: j 2P search o 50 - - | B - Yy Bookmarks -+ | 3P Check - Translate -

';‘"“" Favorikes | -{g, ﬁ Suggested Sikes ~ @ | Web Slice Gallery -

i: ¥ilinz: Downloads | | ﬁ T =
Downloads

UNLOCK NEW LEVELS OF PRODUCTIVITY
ISE Design Suite 12

\ . WINDOWS
DOWNLOAD ;lSE HU 80 Hit/64-bit (281 GE)
" DEEIGN 8UTE

£ Al Platforms (Tarcz -2/ eE) Download Includes ISE WebPACK (Free)
MDS Sum Value: df09b50#fde138737d092a0867969488 ISE Design Zuite (Al Editions)

11.5 ChipScope Pro and ChipScope Pro

£ 32-bit/64-bit Windows | TaR/GZ - 2.51 28 :E”:ll'io T,f;g- d A)
1.4 MDS Sum Valus: 27a01ae5011d5980a8a8d723219a4553 anAhead Design and Analysis

System Generator for DSP

113 =) - [, Platform Studio and Embedded

=, 32-hitlG4-bit Linux [Tar/Gz - 2,85 GE) Development Kit (EDK)

o MDS Sum Value: 15005236ceecT52b5f34fd024f022f1a Ry

» You will be redirected to the secure website for Xilinx. You must create an account in order to
download the file. The file is quite large (approx 3 GB) and will take awhile to download. The
Xilinx website will also prompt you to install a download manager. You will notice this prompt
in the top bar of your Internet Explorer window. Install the download manager to complete
the download.

» The tar file you download may not be recognized by your computer. It is similar to a zip file.
The suggested program to work with the tar file is WinRAR. A trial of this may be downloaded
at http://www.rarlab.com/download.htm

> Once the file is downloaded “unzip” the tar file using WinRAR or your program of choice. All
files will be extracted to a folder named “Xilinx_ISE_DS_Win_12.1 M.53d.0.4”

http://www.xilinx.com/support/download/index.htm
http://www.rarlab.com/download.htm
Administrator
Line

§= ilink_ISE_DS_Win_12.1_M.53d.0.4.tar - WinRAR =]

File Commands Tools Favorites Options Help

3
A "
%]
Add Extract To Test Wigw Delete Find ‘Wizard InFo WirusScan
J m H I@ wilin_I3E_Da_win_12.1_M.53d.0.4 kar - TAR archive, unpacked size 3,017,569,255 bytes j
Modified
[C¥iliny_ISE_DS_Win_12.1_M.53... 4j23/2010 2:02...
|=~a| [Tatal 1 Folder

v

> After the files are extracted find the Xilinx_ISE_DS_Win_12.1_M.53d.0.4 folder and double click
xsetup.exe to begin the installation.

link_ISE_DS_Win_12.1 M.53d.0.4Xilink_ISE_DS W =10]x]
File Edit “iew Favorites Tools Help | 11'
i Back =) - 5 i |) search [~ Folders | - | @Fnlder Sync
Address I@ Ckiling - StudentXiliny_ISE_DS_Win_12,1_M.53d.0.4\xiline_ISE_DS_Win_1Z2.1_M.53d.0.4 j
- bin [planahead
File and Folder Tasks & Comman |- 5a_comman
data [hsdk

J Make a new Folder

]] edk [Chsysaen

@ E\:l:g:sh this Folder to the idata) webpack

- i aut .inf

! share this Folder e '}éu orin.in
| labtoals E] fileset. txk
[Micrasoft, WCS0LCRT i: winfo.exe

Other Places % () Micrasaft, WCE0,MFC i: wsekup.exe
[Symsg

[wilinx_ISE_DS_Win_12.1 =

|19 objects l28.1 KB | d My Computer 4

» Click next on the welcome screen. Accept both software license terms and click next.

> The next screen is very important. You must select the ISE Webpack version for install. The
default selection is not correct (System Edition). Later on in the install you will be directed back
to Xilinx’s website to obtain a license file. The license file you will obtain is for the Webpack and
will not work for any other versions. Select ISE Webpack and click next.

i ISE Design Suite Installer =10

ISE Design Suite Installer

Welcome

Accept License Agreements
-= Select Edition to Install

Select Installation Options

Select Destination Directory

Installation

Copyright [c) 1995-2010 ¥iling, Inc. All rghts
rezerved,

WILIMX, the ¥ilinx loge and other designated
brands included herain are trademarks of Kiling,
Inc, PowerPC is a trademark of IBK, Inc, All
other tradernarks are the property of their
respective OWners,

Select Edition to Install

(= Edition List

ISE WebPACK

ISE Design Suite: Logic Edition

ISE Design Suite: Embedded Edition

ISE Design Suite: DSP Edition

ISE Design Suite: System Edition

Software Developrent Kit: Standalone Installation

r
-
-
Wy
r
-

Lab Tools: Standalone Installation

Digk Space Required 7332 MB

—Description of ISE \WwebPACK

ISE WwiebPACK contains the most important tools you need for designing CPLDs and small to
mediurm-sized FPGAs. Includes: ISE Design Tools (w/reduced device support), Planahead,

and Connectivity and DSP IR ChipScope Pro and The Embedded Development Kit will also

be installed with WebPACK but are licensed separately (not included in a WebPACK license

file).

< Back | Mext = I Cancel

» Click next on the following 2 screens, and then click on Install.

» As the installation is finishing, the Xilinx License Configuration Manager will open so you can
obtain the license. This step is very important — click the radio button next to “Get Free ISE
WebPack License” and click Next. Click “Connect Now” on the window that pops up.

ixxilinu License Configuration Manager _ (o] x|

Acquire a License Manage Xilinx Licenses I

—3elect one of the Following options

™ Stark Mow! - 30 Day Trial (Mo Bitstream)
% et Free 1SE WebPack License

™ Start 30 Day Evaluation

" Gek My Purchased License(s)

" Locate Existing Licensefs)

—Description of the above selected option

Get free ISE WebPack license and start using wour Xilinx software, You will be taken to the
#ilinee website where wou can generate and download a license File conkaining keys ko use 15E
ebPack, Once vour license file is generated, the "Manage Xilin: Licenses" tab will open to
enable you ko configure wour system ko use the license, For more information on ISE
WebPack, including supported devices and applications, please wvisit ww, xilinz, com

About, ., | Mk Close

> Login to Xilinx with the username and password you created earlier. Click Next at the bottom

of the information screen. At the following screen ensure the ISE Webpack License is checked
and click on “Generate Node Locked License”. Click Next on the Generate Node License
window that pops up. Click Next on the review license request window. You can now
download the .lic file from the “Manage Licenses” tab.

> Back in the Xilinx License Manager, copy the license that was generated by clicking on the copy
license button. The license will be copied to the .Xilinx directory.

Appendix C — Downloading and Installing ModelSim PE (Student Version)

> Navigate to http://model.com/content/modelsim-pe-student-edition-hdl-simulation

» Toward the bottom of the page, click on the Download Tab and click on Download. You may

also download the 3 items under “Documentation” for reference.
/= ModelSim PE Student Edition | Yerilog and ¥YHDL Design Support | ModelSim - Advanced Simulation - Windows Internet E

@:_-: L I'snﬂ.d http: [fmadel . camfcontent fmodelsim-pe-student-edition-hdl-simulatian j E *4
File Edit Wiew Favarites Todls Help
*x Go glE | rnadelsinn ;I .'.'" Search @ - I:Ei' @ - fj’ Baokmarks ~ 'E:J,-" Check ~ &

{3 Favarites | ié @ Suggested Sikes » @ | Web Slice Gallery -

ggl - | i: wilime: Downloads '#'Mndelﬁim PE Student Edit... X | I:érﬂu:u:halSim - Downloads | | ﬁ

Model Sim PE Student Edition Performance

- Capacity: 10,000 lines of executable code

- Performance (up to capacity). 30% of PE

- Performance (exceeding capacity). 1% of PE (i.e., 100 times slower than PE).

Model5im PE Student Edition Support Notice

- Mo customer support is provided for ModelSim Student Edition.

- Interact with other users and join the ModelSim Student Edition Discussion Farum.
- Model2im PE Student Edition applies to xB6/AVindows platforms only.

Information Downloads

ModelSim PE Student Edition Downloads
The current Model Sim PE Student Edition release is 6.6b

The following resources are available for ModelSim PE Student Edition users.

Software

-End-User License Agreement i
- Download

Documentation

-Users Manual
- Reference Manual
- Tutorial

> A new window should open up, allowing with a form to fill out in order to request a license. Fill
out the form correctly, as the license file is emailed to you. After the form is completed, the
next page will have the link to download the setup file. ModelSim PE Student Edition will not
properly operate without a license key. After installing the software, a new browser will open to
the license request form. You will need to fill out the form again to have a license generated. It

will be emailed to you along with instructions to activate it.

http://model.com/content/modelsim-pe-student-edition-hdl-simulation

> After downloading the files that were emailed, you should have something like this:

& C:'Model Sim

=10 x|

File Edit Wiew Favorites Tools Help

.'11

(JBack = . - T | ' Search | Folders | (= @Fnlder Sync

Address IIE C:\Model Sim

[

| modelsim_ref . pdf
| rmodelsirm_tut, pdf
- |miodelsirm_user,pdf
| miodelsim-pe-student-edition-hdl-sirmula, pdf

File and Folder Tasks 2

w} Make a new Folder

@ Publish this Folder to the
\Weh

k! Share this Folder

° modelsim-pe_sktudent_edition.exe
student_license. dat
E’] inskall, bxk

e

Other Places

age Local Disk (C:) LI

7 u:ul:uj;;:s 121 MB | ¢ My Computer

> Install modelsim by double clicking on modelsim-pe_student_edition.exe At the conclusion of
the install, the setup will connect you to modelsim’s website to request a license file if not
already done so. Refer to the install.txt file for the proper use of the student_license.dat file

Appendix D — Connecting Xilinx and ModelSim PE

> In order for your simulations to run correctly, we have to tell Xilinx what Simulation tool we are

using and the location of the executable.

This is done in Xilinx preferences. Open Xilinx by

double clicking on the Xilinx ISE Design Suite 12.1 icon on your desktop or start menu.

» Allow Xilinx to open and click on Edit->Preferences. Highlight the Integrated Tools on the menu

tree to the left. Put the path to the executable for ModelSim in the first line. Typical setup is

shown in the below screenshot. You can click on the button with the 3 periods to browse to the

location where ModelSim was installed.

EE preferences - Integrated Tools Dptions x|

Cateqgory Set the paths For the integrated tools vou have installed.

----.HTML Erowser

i Edikors

\\5\.‘ d [nkegrated Tools
‘- Process Completion M

- 15E Text Ediktar

- Language Templates

[=]- RTLjTechnology Yiewers

- Color Scheme

- Mew Object Colors

- Object Calars

-+ User Color Rules

[=]- Schematic Editor

- Check

- Colors

- Dievice Families

- Layauk

- Prinking

- Sheet Sizes

[=]- Symbol Editor

o Colors
- Timing Analyzer
- WebTalk
[=1- EilirzMatiFy
i Proy Settings

D b

Model Tech Simulator:

[=1- ISE General - - - |
Design Goals & Strate C:\Modeltech_pe_edu_6.6a\win3Z2pe_edulmodelsin, exe /) | Default

Synplify:

Synplify Prog

_I Default |

Precision:

gI Default |

PlanAhead:

gI Default |

I Cihilined, 12,10 5E_DSYPlanaheadibin

&I Default |

(04 I Cancel Apply Help

> Click OK to accept. You should now be able to run simulations as described in the tutorial.

Administrator
Line

Administrator
Oval

Administrator
Line

	Introduction
	Creating a New Project
	Synthesis and Implementation of the Design
	Functional Simulation of Combinational Designs
	Preparing and downloading bitstream file for the Spartan FPGA
	Testing a Digital Logic Circuit
	Design and Simulation of Sequential Circuits using Verilog HDL
	Hierarchical Circuit Design Using Modules
	Appendix-A: Verilog Hardware Modeling
	Appendix-B: Installing Xilinx Webpack
	Appendix-C – Downloading and Installing ModelSim PE (Student Version)
	Appendix-D – Connecting Xilinx and ModelSim PE

