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Abstract— In today’s VLSI technology, the process variations 

are unavoidable. This paper proposes an efficient analysis 

approach for exploring the worst case performance for VLSI 

circuits with severe parameter value variations due to nano-

scale process. Inspired by Kharitonov’s theorem, the 

described method 1  dramatically reduces the computational 

burden to only evaluate several critical Kharitonov-type 

interval transfer functions. The computational efficiency of 

the method is demonstrated by two practical VLSI circuits. 

I.  INTRODUCTION  

 
   As the advanced VLSI technology has reached 22nm feature 

size and below, process lithography no longer produces the ideal 

dimension of circuit components. The corresponding electrical 

parameters may vary as large as 1/3 or more [1]. Therefore, 

today’s computer-aided design (CAD) tools are not only applied 

to design nominal VLSI circuits to meet the specs, but also assist 

in performance robustness analysis of nano-scale VLSI circuits 

with the effect from the unavoidable manufactured fluctuations. 

Current CAD tools to deal with performance robustness analysis 

of VLSI circuits with process variations are mainly developed 

along the line of the Monte Carlo method or similar stochastic and 

statistical analysis methods, e.g., [2], [3]. However, they all 

require long simulation time and underestimate the likely 

performance variation range when the sampling numbers are not 

sufficient enough. A main concern is to determine the worst case 

performance range of nano-scale VLSI circuits without evaluation 

of large number of samples as required by Monte Carlo method. 

   In this paper, we interest in calculating the worst case 

frequency-domain performance of VLSI circuits with 

manufactured variations. The uncertainties of electrical 

parameters are represented as real interval numbers. Given an 

uncertain electrical parameter p, suppose there is a variation level 

of 30% to it, then p varies within an interval of [p-, p+]. p- and p+ 

are the endpoints of the interval, and p- equals to p×(1-30%), 

while p+ equals to p×(1+30%). Note that it is not necessary to 

know the statistical properties of p but the endpoints of the 

interval. Consider the behavior of a VLSI circuit is governed by 

an interval transfer function:  
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where ai (i=0,1,…,m) and bi (i=0,1,…n) are uncertain coefficients 

for numerator and denominator. They vary randomly within [ai
-, 

ai
+] and [bi

-, bi
+] respectively. In practical VLSI circuits, ai and bi  

are usually constituted of several underlying parameters. 

Therefore, the variation ranges of coefficients should be converted 

from their corresponding parameters’ variation ranges by applying 

interval arithmetic [4].  

   The rest of this paper is organized as follows. Section II briefly 

explains the geometrical properties of Kharitonov’s theorem. 

Section III introduces critical transfer functions and their 

construction. The application of the proposed idea to two practical 

VLSI circuits is described in section IV. Finally, section V 

concludes this paper. 

II. KHARITONOV’S THEOREM AND ITS GEOMETRICAL 

PROPERTIES 

 
Kharitonov’s Theorem [5] is a seminal theorem to determine 

robust stability of perturbed control systems.  Given a perturbed 

control system which is modeled by a family of real interval 

polynomials: 
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where qi is uncertain coefficient with variation range [qi
-, qi

+]. 

Kharitonov’s theorem states that the Hurwitz stability of a family 

of real interval polynomials can be guaranteed by the Hurwitz 

stability of four prescribed critical vertex polynomials 

(Kharitonov’s Polynomials) in this family which are given as 

follows: 
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where Pel, Peh (Pol, Poh) are responding to smallest and largest 

even (odd) part. For clearly understanding the Kharitonov’s 

theorem, we search its geometrical interpretation in frequency-

domian through substituting s=jɷ in (2). For a fixed frequency 

ɷ=ɷ0, the image of (2) in complex plane is in shape of rectangle 

(Kharitonov’s rectangle) as illustrated in Fig.1 (a) and its four 

vertices are corresponding to four Kharitonov’s polynomials. We 

denote |P(jɷ)| the distance from the origin to a point within the 

Kharitonov’s rectangle, while arg P(jɷ) stands for the angle 

between the positive Re-axis and the line from the origin to a 
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point within the Kharitonov’s rectangle. Notice that   as  ɷ varies,   

so  does  the  location of the Kharitonov’s rectangle. As illustrated 

in Fig.1(b), cases to get the extreme values of |P(jɷ)| and arg 

P(jɷ)  fall  into  8 different   possibilities   (exclude  the  case  that  
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Fig.1 (a) Kharitonov’s rectangle  

(b) 8 possibilities of Kharitonov’s rectangle 
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Fig.2 Kharitonov’s rectangles for numerator and denominator of 

interval transfer function 
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Fig. 3 (a) Common source amplifier (b) Wien Bridge oscillator  

 

Table1 Parameter and variation range of common source amplifier 

parameter Nominal value Tolerance range (30%) 

RD 10k [7, 13 ] k 

CDB 17.9731fF [12.58, 23.37] fF 

gm 0.3052mA/V [0.2136, 0.3968 ] mA/V 

CGS  27.345fF [19.14, 35.55] fF 

Rs 5 k [3.5, 6.5] k 

CL 1 F [0.7, 1.3] F 

r0 390.11 k [273.07,507.14] k 

CGD 1.3897 fF [0.972, 1.807] fF 

 

Table 2 Parameter and variation range of Wien Bridge oscillator 

parameter Nominal value Tolerance range (30%) 

RF 20k [14, 26 ] k 

R1, R2, RS 10 k [7, 13] k 

C1, C2 1nF [0.7,1.3] nF 

 
P(jɷ)=0) . Careful examination of the Kharitonov’s rectangle 

reveals several important facts: 
1) max |P(jɷ)|, min arg P(jɷ) and max arg P(jɷ) can be obtained  

at one of four vertices. 

2) min |P(jɷ)| may coincide with the one  of { |K1(jɷ)|,  |K2(jɷ)|, 

|K3(jɷ)|, |K4(jɷ)|, |Pel(jɷ)|, |Peh(jɷ)|, |Pol(jɷ)|, |Poh(jɷ)|}. 

For detailed discussion, one can refer to [6].  

 

III. CONSTRUCTION OF CRITICAL TRANSFER FUNCTION 

 
We consider (1) as the quotient of two families of interval 

polynomials of (2). Thus, to obtain |H(jɷ)| and arg H(jɷ), we 

only need to divide the gains and subtract the phases of the 

numerator and denominator. For finding the minimum and 

maximum values, 4 computational formulas are given: 
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max arg H(jɷ) = max arg N(jɷ) – min arg D(jɷ)         

 
(4c)  

 

min arg H(jɷ) = min arg N(jɷ) – max arg D(jɷ)          (4d)   

                                           

   At a given frequency point ɷ0, two Kharitonov’s rectangle for 

N(jɷ0) and D(jɷ0) can be sketched as shown in Fig.2. D1, D2, D3, 

D4 and N1, N2, N3, N4 denote the four Kharitonov’s polynomials 

for denominator and numerator, while Del , Deh , Dol , Doh and Nel , 

Neh , Nol , Noh represent smallest even part, largest even part, 

smallest odd part and largest odd part for denominator and 

numerator respectively. In this case, |N (jɷ0)| is maximized at 

|N4(jɷ0)| and minimized at |N1(jɷ0)|, whereas max arg N(jɷ0) is 

got at arg N2(jɷ0) and min arg N(jɷ0) is equal to arg N3(jɷ0). 

Similarly, |D(jɷ0)| is maximized at |D2(jɷ0)| and minimized at 

|Deh(jɷ0)|, while max arg D(jɷ0) is got at arg D3(jɷ0) and min arg 

D(jɷ0) is at arg D4(jɷ0). Now, they can be combined to calculate 

the extreme values of |H (jɷ0)| and arg H(jɷ0). That is, max 

|H(jɷ0)| is equal to |N4(jɷ0)| / |Deh(jɷ0)|, whereas max arg H(jɷ0) 

is the difference between arg N2(jɷ0) and arg D3(jɷ0);  min 

|H(jɷ0)| is equal to |N1(jɷ0)| / |D2(jɷ0)|, whereas min arg H(jɷ0) 

is the difference between arg N3(jɷ0) and arg D4(jɷ0).  For a 

range of frequencies, we should take into consideration the overall 

possible combinations of the extreme values of numerator and 

denominator. By taking into consideration all the situations, the 

following two corollaries can be obtained. 

Corollary3.1 The envelopes of 48 critical Kharitonov-type 

interval transfer functions: 
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i=1,2,3,…48; 

 Nj  {N1, N2, N3, N4, Nel, Neh, Nol, Noh}; 

Dk   {D1, D2, D3, D4, Del, Deh, Dol, Doh}; 

 

yields variation range of magnitude response .  

Corollary3.2 The envelopes of 16 critical Kharitonov-type 

interval transfer functions: 
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i=1,2,3,…16; 

 Nj  {N1, N2, N3, N4}; 

Dk   {D1, D2, D3, D4}; 

 

yields variation range of phase response .  



 
 

Fig. 4 Simulation result of common source amplifier (envelopes 

by the proposed method and 500 Monte Carlo samplings) 

 

IV. CASE STUDIES 

 

   To illustrate the basic idea of our approach, two cases are 

studied. One is a common source amplifier, another one is Wien 

Bridge oscillator.  

Case 1. Consider a common source amplifier of Fig.3 (a), its 

transfer function of output/input voltage is given: 
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Where ξ=CGSCGD+CGS(CDB+CL)+(CDB+CL)CGD, RD
’= RD//r0, 

ζ=RSCGD(1+gm RD
’). Assume that there is 30% variation to every 

parameter. The nominal value and tolerance range of each 

electrical parameter is listed in Table. 1. The variation ranges of 

parameters are firstly mapped into coefficients’ variation ranges 

by applying interval arithmetic. Given two real interval numbers 

p1 and p2, then the basic interval arithmetic operations are:   

 

1) p1 + p2 = [p1
- + p2

-, p1
+ + p2

+]; 

2) p1 - p2 = [p1
- - p2

+, p1
+ - p2
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3) p1 × p2 = [min(p1
- p2
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+, p1
+ p2

-, p1
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+), max(p1
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-, 
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+, p1
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-, p1
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4) p1/ p2= p1×(1/ p2); p2≠0   

 

For example, the first-order coefficient of numerator of (7) is CGD 

×RD
’, the corresponding variation range of a1 is the product of 

CGD and R’D, that is [0.0357×1010, 0.4253×10-10]. The remaining 

coefficients’ variation ranges are [-9.3401, -0.7851] for a0, 

[0.0025, 0.0307] for b1, and [0.0175×10-12 0.7187×10-12] for b2, 

respectively. Secondly, the eight Kharitonov’s polynomials for 

numerator and denominator are calculated in equation (8a) to 

(8h): 

 
 

Fig.5 Simulation result of common source amplifier (envelopes by 

the proposed method  and 5000 Monte Carlo samplings) 

 

 

N1(s) =Nel(s) +Nol(s) =-9.3401+0.0357×10-10s                (8a) 

N2(s) =Nel(s) +Noh(s) =-9.3401+0.4253×10-10s                (8b) 

N3(s) =Neh(s) +Nol(s)=-0.7851+0.0357×10-10s       (8c) 

N4(s) =Neh(s) +Noh(s)=-0.7851+0.4253×10-10s       (8d) 

D1(s) =Del(s) +Dol(s)= 

1+0.7187×10-12s2+0.0025s      

 

(8e)   

D2(s) =Del(s) +Doh(s)=  

1+0.7187×10-12 s2+0.0307s      (8f)   

D3(s) =Deh(s) +Dol(s)= 

1+0.0175×10-12 s2+0.0025s      

 

(8g)   

D4(s) =Deh(s) +Doh(s)= 

1+0.0175×10-12 s2+0.0307s      

 

(8h)
 

  

   Following corollary 3.1 and corollary 3.2, 48 and 16 critical 

Kharitonov-type transfer functions are readily constructed from 

(8a) to (8h). The calculated worst case variation ranges of 

magnitude and phase response are plotted in red lines in Fig.4 and 

Fig.5. We compare the envelopes with 500 Monte Carlo 

simulation samples in Fig.4 and 5000 Monte Carlo samplings in 

Fig.5, respectively. Their parameters are randomly sampled from 

corresponding variation ranges shown in Table.1. It is clearly 

illustrated that the Monte Carlo samplings are well enclosed by 

the envelopes. The more Monte Carlo samplings are been 

sampled, the closer they are to the envelopes, and they will finally 

hit the envelopes if sufficient samplings are simulated. From the 

calculated envelopes, we can tell that because of the process 

variations, the gain of the common source amplifier may be as 

high as 19.407dB, the highest UGF may be 3612Hz, and the 

highest phase margin may be 89.1o.  The envelopes also predict 

that the common source amplifier may lose the ability of 

amplification, since the lowest gain may be -2.1047dB. It provides 

an useful information to designers to optimize their circuit by 

considering likely performance under process variations.  

19.407 

-2.1047 

3612Hz 

89.11o 



 
Fig.6 Simulation result of Wien Bridge oscillator (envelopes by 

the proposed method and 500 Monte Carlo samplings) 

 

Case 2. Consider a Wien Bridge oscillator shown in Fig.3 (b). The 

transfer function is given as: 
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   With assumption of 30% variation level to every parameter, 

Table.2 lists the nominal value and variation range of every 

parameter. A similar transformation from variation ranges of 

parameters to the coefficients’ variation ranges is applied at first, 

and they are [1.0177×10-5, 7.9672×10-5] for a1, [1.47×10-5, 

5.07×10-5] for b1, [2.401×10-11, 2.8561×10-10] for b2. Next, the 

eight Kharitonov’s polynomials for numerator and numerator can 

be formulated as: 

 

Nol(s) =1.0177×10-5s (10a)  

Noh(s) =7.9672×10-5s (10b) 

D1(s) = Del(s)+Dol(s)=1+2.8561×10-10s2+1.47×10-5s (10c) 

D2(s) = Del(s)+Doh(s)=1+2.8561×10-10s2+5.07×10-5s (10d) 

D3(s) = Deh(s)+Dol(s)=1+2.401×10-11s2+1.47×10-5s (10e) 

D4(s) = Deh(s)+Doh(s)=1+2.401×10-11s2+5.07×10-5s (10f) 

 

Since there is only one item in the numerator of (9), the numbers 

of critical Kharitonov-type transfer functions are reduced to 20 for 

magnitude response and 8 for phase response. Fig.6 and Fig.7 

display the calculated worst case performance ranges of 

magnitude and phase responses of Wien Bridge oscillator in red 

lines, and 500 Monte Carlo samplings and 5000 Monte Carlo 

samplings in blue lines. The more samplings are simulated, the 

closer they are to the envelopes. The envelopes predict that the 

frequency which may cause oscillation varies from 1.8834 Hz to 

6.4961 Hz, when the Monte Carlo samples fail to evaluate the 

likely performance range for Wien bridge oscillator within finite 

samplings.  

 
Fig.7 Simulation result of Wien Bridge oscillator (envelopes by 

the proposed method and 5000 Monte Carlo samplings) 

V. CONCLUSION 

 

Two   practical   VLSI circuits are studied to demonstrate   the   

efficiency of the proposed approach in performance robustness 

analysis of VLSI circuits with process variations. This method 

takes advantage of Kharitonov’s theorem and reduces the 

computational complexity to at most 48 Kharitonov-type critical 

transfer functions’ calculation even for the complicated VLSI 

circuits with large transfer function order. The approach provides 

a good graphic means of investigating of worst case frequency-

domain performance of VLSI circuits with manufactured 

variations. The proposed method is general and can be extended to 

evaluate worst case performance for other circuits and other 

performance metrics of interest when a similar interval transfer 

function is established. 
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