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Abstract: We evaluate the performance of single-section and three-section PMD compensators. Three-
section compensators offer less than twice the advantage of single-section compensators (in dB) due to
higher-order PMD correlations.
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1 Introduction

Polarization-mode dispersion (PMD) is one of the barriers to upgrading the current per-channel data rates to 10 Gbits/s
and beyond in a large number of terrestrial optical fiber systems. One approach to mitigating the effects of PMD is to
build optical PMD compensators with a number of high-birefringence sections. Since PMD is a random process, the
polarization rotation produced by the polarization controllers of the compensator must be actively controlled through
an electronic feedback process that monitors the system performance. Sometimes, the magnitude of the birefringence
in one or more of the sections is controlled as well. Better compensation as a function of frequency can be provided
by using multiple sections. As a consequence, there has long been a view that the use of multi-section compensators
should yield a large improvement relative to single-section compensators. Compensators with as many as 15 sections
have been built and studied [1]. On the other hand, recent work has shown that higher orders of PMD are highly
correlated with the lower orders and that PMD compensation can induce additional higher-order PMD correlations,
calling into question the efficacy of higher-order PMD compensation [2], [3].

In this work, we investigate the effectiveness of higher-order PMD compensators by comparing a single-section,
variable-DGD compensator to a three-section compensator with two fixed-DGD elements followed by one variable-
DGD element. Our reason for focusing on the three-section compensator is that it is the simplest compensator that
allows one in principle to compensate both first- and second-order PMD [4]. We find that the use of three sections does
significantly improve the compensation. However, the improvement is less than a factor of two (in dB), despite the
large increase in complexity (7 feedback quantities instead of 3). We show that the residual PMD is highly correlated
with the first two compensated orders in the three-section compensator, to which we attribute the diminished returns
with increased complexity.

To study the performance of the compensators, we used two extended Monte Carlo methods. The first is multiple im-
portance sampling (IS) [5], in which one biases the first- and second-order PMD, and the second is the multicanonical
Monte Carlo (MMC) method [6]. The first method requiresa priori knowledge of how to bias the simulation; the
second is an adaptive method that requires noa priori knowledge. Both methods work well with both compensators.
They yield the same results within the limit of their statistical errors, and the multiple importance sampling is more
efficient. It may appear surprising at first that multiple importance sampling works well with the three-section com-
pensator, in which both first- and second-order PMD are compensated by the feedback process. Its success indicates
that there exists a large correlation between first- and second-order PMD and higher orders, so that the first two orders,
even when compensated, remain a good predictor for the residual penalty.

2 Theory

In order to compensate for PMD, we use a single-section PMD compensator [1], which is a variable-DGD compensator
that was programmed to eliminate the residual DGD at the central frequency of the channel after compensation, and a
three-section PMD compensator based on the compensator proposed in [4]. The three-section compensator consists of
two fixed-DGD elements that compensate for the second-order PMD, and one variable-DGD element that eliminates



the residual DGD at the central frequency of the channel after compensation. Second-order PMD has two components:
Polarization chromatic dispersion (PCD) and the principal states of polarization rotation rate (PSPRR) [4]. Letτ 1 be
the polarization dispersion vector (PDV) of the transmission line, andτ 2 andτ 3 the PDVs of the two fixed-DGD
elements of the three-section compensator. The first- and second-order PMD vector of these three concatenated fibers
are given by

τ tot = R3 R2 τ 1 + R3τ 2 + τ 3, (1)

τ tot,w = (τ 3 + R3τ 2) × R3 R2 τ1q̂1 + τ 3 × R3τ 2 + R3 R2 τ1wq̂1 + R3 R2 τ1q̂1w, (2)

whereR2 andR3 are the rotation matrices of the polarization controllers before the first and the second fixed-DGD
elements of the compensator, respectively. In (2),τ1wq̂1 andτ1q̂1w are the transmission line PCD and the PSPRR
components, respectively, where we express the PDV of the transmission fiber asτ 1 = τ1q̂1. Hereτ is the DGD and
q̂ = τ/ |τ | is the Stokes vector of one of the two orthogonal principal states of polarization.

The second-order PMD compensator has two operating points [4]. For the first operating point, the termτ 3 × R3τ 2

in (2) is used to cancel the PSPRR componentR3 R2 τ1q̂1w, provided that we chooseR3 andR2 so thatR†
3τ 3 × τ 2

and R2τ1q̂1w are antiparallel, whereR†
3 is the Hermitian conjugate ofR3. Note that with this configuration one

cannot compensate for PCD. For the second operating point,τ 3 × R3τ 2 in (2) is used to compensate for PCD
by choosingR†

3τ 3 × τ 2 and R2τ1wq̂1 to be antiparallel. Moreover, we can add an extra rotation toR2 so that[(
R†

3τ 3 + τ 2

)
× R2 τ1q̂1

]
and R2 τ1q̂1w are also antiparallel. In this way, the compensator can also reduce the

PSPRR term. In our simulations, we compute the reduction of the PCD and PSPRR components for the two oper-
ating points and we select the one that presents the largest reduction of the second-order PMD. Finally, the third,
variable-DGD, section of the compensator cancels the residual DGDτ tot after the first two sections.

3 Simulation Results and Discussions

We evaluate the performance of a single-section and a three-section PMD compensator in a10 Gbits/s nonreturn-to-
zero system with a mean differential group delay (DGD) of30 ps. The three-section compensator has two fixed-DGD
elements of45 ps and one variable-DGD element. The results that we present here were obtained using30 MMC
iterations with8, 000 samples each and using importance sampling with a total of2.4 × 105 samples. We estimate
the errors in MMC using a transition matrix method that will be described in detail elsewhere, while we estimate the
errors in IS as in [7].

In Fig. 1, we plot the outage probability [7] (P̂op) as a function of the eye-opening penalty for the two compensators
that we study. The maximum relative error (σ̂P̂op

/P̂op) for the curves computed with MMC shown in this plot equals
0.2, but is smaller in almost all bins, typically around0.1. The relative error for the curves computed with IS is smaller
than with MMC, and is not shown in the plot. The maximum relative error for the curves computed with IS equals0.12.
The results obtained using MMC simulation (solid lines) are in agreement with the ones obtained using IS (symbols).
The agreement between the MMC and IS results was expected for the case that we use a single-section compensator,
since this type of compensator can only compensate for first-order PMD [8], so that the dominant source of penalty
after compensation is essentially the second-order PMD of the transmission line that is properly biased by importance
sampling. As a consequence, MMC and IS give similar results.

In Fig. 1, we also observe good agreement between the MMC and IS results for the three-section compensator. This
level of agreement indicates that three-section compensators that compensate for the first two orders of PMD of the
transmission line in the Taylor expansion produce residual third and higher orders of PMD that are significantly
correlated with the first- and second-order PMD of the transmission line. Therefore, the use of IS to bias first- and
second-order PMD is sufficient to accurately compute the outage probability in systems where the first two orders of
PMD of the transmission line are compensated. Significantly, the performance improvement with the addition of two
sections, from the single-section compensator to the three-section compensator, is not as large as the improvement in
the performance when one section is added, from the uncompensated to the single-section compensator. The dimin-
ishing returns that we observe for increased compensator complexity is consistent with the existence of correlations
between the residual higher orders of PMD after compensation and the first two orders of PMD of the transmission
line that are compensated by the three-section compensator. In Fig. 2, we provide partial evidence for this correlation
by plotting the conditional expectation of the magnitude of third-order PMD as a function of the DGD of the trans-
mission line,〈|τωω| | |τ |〉, before and after the three-section compensator. We normalize the DGD|τ | by the mean



DGD 〈|τ |〉, and |τωω| by 〈|τωω|〉 to obtain results that are independent of the mean DGD and of the mean of the
magnitude of third-order PMD. As one can observe, the conditional expectation is actually larger after compensation
demonstrating the strong correlation between the residual third-order after the compensator and the first-order PMD
of the transmission line. The increase in the third-order PMD after the compensator is on the order of30% for DGD
values larger than three times the mean DGD.
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Fig. 1. Outage probability as a function of the eye-opening penalty. Curves from top to bottom of the plot: (i) dashed line
(MMC) and triangles (IS): uncompensated system. (ii) dot-dashed line (MMC) and circles (IS): system with a single-section
compensator. (iii) solid line (MMC) and diamonds (IS): system with a three-section compensator.
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Fig. 2. Conditional expectation of the magnitude of the third-order PMD,|τωω |, given a value of the DGD of the transmission
line, |τ |. (i) solid line: conditional expectation after the three-section compensator. (ii) dashed line: conditional expectation
before the three-section compensator.

4 Conclusions

We showed that the three-section compensator offers less than twice the advantage (in dB) of single-section com-
pensators due to the correlation between the residual PMD after compensation and the first two orders of PMD of
the transmission line. We attribute the diminishing returns with increased complexity to the existence of correlations
between the first two orders of PMD prior to compensation and higher orders of PMD after compensation.
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