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1 Introduction

We are interested in investigating the roughness of the human cingulate gyrus,
a region of the cortex of the brain. Ratnanather et al. [4] found that local area,
a measure of surface roughness that they define, varies significantly between the
cingulate gyri of control and schizophrenic subjects. We wish to statistically
investigate the relationship between this new quantity, local area, and Gauss
and mean curvature, two much more classical measures of surface roughness
that have been well-studied and understood for more than a century (at least
in the context of the human cingulate gyrus). We take much of our inspiration
from the work of Ratnanather et al., so that our results may be applicable to
their future research. We represent our cingulate gyri as triangulated surfaces,
and the principle contribution of this research is the combined use of the theory
of curvature measures on triangulated developed by Cohen-Steiner and Morvan
[1] and Krummel and Zweck [2] and spatial averaging as developed in by Meyer
et al. [3] to approximate the curvature of triangulated surfaces. Once we have
computed our curvature approximations, we attempt to identify correlations
between the curvature and local area of our sample cingulate gyri and analyze
the significance of these correlations.

2 Local Area

Ratnanather et al. [4] define local area to quantify the roughness of a surface.
Let M ⊆ R3 be a surface, and p ∈ M . Intuitively, the local area of M at p
measures the amount of surface area of M that lies in a three dimensional ball
centered at p. The radius of this ball is important to the definition of local area
and is known as the scale parameter, σ. In practice, however, it is difficult to
determine the intersection of a ball and a surface in R3, so Ratnanather et al.
instead introduce a three dimensional Gaussian kernel centered at p to make
computing local area more efficient. The scale parameter σ > 0 specifies the
half-width of this Gaussian kernel, which is convolved with the area measure
of M to define local area. This convolution causes the area of M close to p to
contribute more to the local area at p.
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Definition 1. Let M ⊆ R3 be a surface with p ∈M and σ > 0. The local area
of M at p at the scale given by σ is

LM (p, σ) =
∫

M

exp

(
−1

2

(
‖ p− x ‖

σ

)2
)
dA (x) . (1)

Note that, as a measure of surface roughness, local area is defined using
integration, whereas curvature, a more classical measure of surface roughness,
is often defined using differentiation. In addition to local area, Ratnanather
et al. define a quantity called the magnitude of the relative local area, which
compares the local area of a surface to the local area of a plane at the same
scale.

Definition 2. Let M ⊆ R3 be a surface with p ∈M and σ > 0. The magnitude
of the relative local area of M at p at the scale given by σ is

lM (p, σ) =
∣∣∣∣LM (p, σ)

2πσ2
− 1
∣∣∣∣ . (2)

(Note that 2πσ2 is the local area of a plane at scale σ.)

3 Triangulated Surfaces

We call T ⊆ R3 a triangulated surface if it is a finite union of disjoint closed
triangles. Each of these triangles is a face of T , their edges are the edges of T ,
and their vertices are the vertices of T . We say that T has no boundary, if each
edge of T must belong to exactly two faces.

An orientation of a face is an ordering of its vertices. Note that a orien-
tation on a face induces an orientation on each of its edges. As in the case
of smooth surfaces, an orientation on a face defines a unit normal vector field
over the face. In order for the unit normal vector field of T to be well defined,
the orientations on adjacent faces must be compatible in the sense that the
orientations induced on their common edge must be opposite, as illustrated in
Figure 1. This compatibility of orientation is essential to obtaining accurate
curvature estimates.

3.1 Data Acquisition

The data used in this study was provided by Prof. J. Cernansky at Washing-
ton University School of Medicine and Dr. J.T. Ratnanather at Johns Hopkins
University. The process by which our cortical data is acquired necessitates our
concern with triangulated surfaces. First, a subject underwent three MRI scans
in quick succession. The three dimensional data from each of these scans was av-
eraged in order to smooth any numerical artifacts introduced by the acquisition
process. The marching cubes algorithm was then used to extract a triangulated
isosurface that represents the cortex of the brain from this three dimensional
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Figure 1: An example of compatible orientations on adjacent faces.

data. This isosurface then underwent further post-processing to isolate the cin-
gulate gyrus, yielding the triangulated surfaces with which we work. The data
used by Ratnanather et al. [4] was acquired in a similar process, except that
only one MRI of the subject was used, so their data was not smoothed as much
in pre-processing. We hope to obtain more accurate curvature estimates from
our smoothed data.

3.2 Approximation of Local Area

Ratnanather et al. [4] not only define local area in the smooth case, but also
give an approximation for triangulated surfaces. The key assumption that yields
their approximation is that the scale of the triangles is sufficiently small so that
the Gaussian kernel may be approximated by a constant over each one. Let
T ⊆ R3 be a triangulated surface, with faces Tk for k = 1, 2, . . . , n, with xk the
center of Tk. For σ > 0, Ratnanather et al. [4] use the approximation

L (xi, σ) ≈
n∑

k=1

exp
(
−‖ xi − xk ‖2

2σ2

)
Area (Tk) . (3)

We also use this approximation, computed with code provided by Ratnanather
and his colleagues.

We extend the approximation in Equation 3 to the magnitude of the relative
local area in the obvious fashion.

3.3 Approximation of Curvature

Many approximations of the curvatures of triangulated surfaces have been de-
rived. We take the approach curvature measures on triangulated surfaces devel-
oped by Cohen-Steiner and Morvan [1] and Krummel and Zweck [2]. We adopt
this approach for a number of reasons. The following logic shows that it is im-
possible to define curvature meaningfully on a triangulated surface. Consider
any point on the surface. If the point is in the interior of a face, the surface
as zero curvature at that point, since it is locally flat. If the point lies on an
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edge, there is no clear choice of orientation at the point, and therefore we can-
not differentiate the unit normal to obtain curvature in the classical manner of
differential geometry. This difficulty that arises in attempting to define point-
wise curvature on a triangulated surface naturally leads to the consideration
of nonlocal approximations of curvature, most naturally curvature measures.
In addition to its resolution of the above difficulty, there is a rich theory of
curvature measures that has been developed in pure mathematics, and our ap-
proach can be regarded as an extension of this theory to applications involving
triangulated surfaces.

Definition 3. Let T ⊆ R3 be a triangulated surface without boundary and let
B ⊆ R3 be measurable. The Gauss curvature measure of T is given by

φK
T (B) =

∑
v∈B∩T a vertex

(2π − θ (v)) , (4)

where θ (v) is the sum of the angles incident at v.

Definition 3 gives the Gauss curvature measure for triangulated surfaces
defined by Cohen-Steiner and Morvan [1]. This curvature measure possesses
several properties that make it both theoretically and computationally attrac-
tive. From a theoretical perspective, it measures the angle defect at each vertex,
a concept intimately related to Gauss curvature in differential geometry. It also
represents a discretization of the Local Gauss-Bonnet Theorem; it has been
proved many times (for instance, in [2]) that φK

T (T ) = 2πχ (T ), just as in the
Global Gauss-Bonnet Theorem of smooth differential geometry. From a compu-
tational perspective, this measure is a linear combination of Dirac measures at
each vertex of T , and is therefore simple to program and efficient to compute.

Definition 4. Let T ⊆ R3 be a triangulated surface without boundary and let
B ⊆ R3 be measurable. The mean curvature vector measure of T is given by

φH ~U
T (B) =

∑
e⊆B∩T an edge

− sin
(
βe

2

)
length (e ∩B) ~U+

e , (5)

where βe is the angle between the normal vectors of the two faces that contain e
and ~U+

e is the unit vector in the same direction as the sum of these two normals.

Figure 2 illustrates the geometry of the quantities βe and ~U+
e . Krummel and

Zweck [2] define the mean curvature vector measure, because, unlike its scalar
counterpart, it is independent of the orientation on the triangulated surface. We
use the magnitude of the mean curvature vector measure to approximate the
absolute value of mean curvature. This measure is significantly more analytically
complicated than the Gauss curvature measure, and is consequentially more
difficult to program and more computationally expensive.

3.4 Spatial Averaging

Since we employ measures to approximate the curvature of triangulated surfaces,
we obtain a total curvature (or curvature vector) for each subset of the surface.
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Figure 2: Two faces meeting, looking along their common edge.

In order to store our curvature estimates efficiently and compare them to the
estimates of local area, we wish to obtain curvature estimates at the vertices
of the triangulated surface. We reduce curvature estimates on a subset of the
triangulated surface to estimates at a point on the surface by a process called
spatial averaging. To each vertex of the triangulated surface, we associate a
subset of the surface containing the vertex, and approximate the curvature at
the vertex by dividing the value of the curvature measure on the set by the area
of the set. Meyer et al. [3] define such a partitioning scheme that minimizes the
error from this spatial averaging.

Given a vertex of the surface, this partitioning scheme considers its one ring,
that is, all faces that contain the vertex. The set associated with the vertex will
be a subset of the one ring of the vertex. For each face in the one ring, if the face
is non-obtuse, it must contain its circumcenter. The portion of the associated
set in that face is obtained by connecting its circumcenter with the midpoints
of its two edges that contain the vertex; this region is commonly known as the
Voronoi region of the triangle. The area of the Voronoi region of a non-obtuse
triangle PQR is given by AVoronoi = 1

8

(
|PR|2 cot ∠Q+ |PQ|2 cot ∠R

)
[1]. If

the face is obtuse, it cannot contain its circumcenter, so its Voronoi region will
not lie completely within the one ring. In this case, if the angle of the face at the
vertex is obtuse, the associated set contains half of the area of the face. If the
angle of the face at the vertex is acute, the associated set contains one quarter
of the area of the face. In both the obtuse and non-obtuse cases, it should be
noted that the associated set meets the edges of the faces of the one ring at their
midpoints. This special property simplifies the computation of the length term
in Equation 5 and is illustrated in Figure 3. Another attractive property of this
partitioning scheme, from a measure-theoretic perspective, is that for different
vertices, the associated sets are disjoint, and the union of the sets for each of
the vertices covers the surface. This property ensures that each point is counted
exactly once during the spatial averaging process.

Through this spatial averaging we obtain estimates of curvature at each ver-
tex of a triangulated surface which we can statistically compare to corresponding
estimates of local area.
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Figure 3: A vertex, its one ring, and the set used for spatial averaging (show in
red).

Figure 4: A right anterior cingulate gyrus colored by Gauss curvature.

4 Results and Analysis

4.1 Hypothesis

We use the approximations from the previous section to obtain estimates of
curvature and local area for a set of cingulate gyri obtained via MRI. In order
to formulate a hypothesis to be tested statistically, we plot these quantities
on the triangulated surfaces they were obtained from as shown in Figure 4,
Figure 5, and Figure 6.

The roughness of the coloring of these plots is due to the fine scales over
which we take the local area and spatially average the curvature measures.
These scales are on the order of the one rings of the vertices. We are motivated
to use such a small scale (comparable to the scale of the one rings) by the
results of Ratnanather et al. [4]. The relationship between surface roughness (as
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Figure 5: A right anterior cingulate gyrus colored by the absolute value of mean
curvature.

Figure 6: A right anterior cingulate gyrus colored by local area.
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Figure 7: A cingulate gyrus colored by local area (obtained using a large scale).

measured by local area) and schizophrenia found in this research only occurs at
fine scales approaching the scale of the triangulation. In order to obtain results
applicable to this past research, we must investigate the relationship between
curvature and local area at similar small scales. When we increase the scale
of our local area estimates and our spatial averaging beyond the one ring of a
vertex, the resulting plots become smoother. An example of such a smoother
plot is shown for local area in Figure 7.

Our hypothesis concerns aggregate statistics from each sample cingulate
gyrus. For each surface, we compute the mean, variation, first and second
quantiles, and median of each of Gauss curvature, the absolute value of mean
curvature, and local area, yielding fifteen statistics for each cortical surface. We
then compare corresponding curvature and local area statistics in the follow-
ing manner. We first choose a statistic to compare, for example, the median
of Gauss curvature. We divide R2 into boxes, and for each sample cingulate
gyrus, we plot the point whose coordinates are the median of Gauss curvature
and the median of local area, and note in which box it falls. After repeating
this procedure for each sample surface, we count the number of sample points
in each box and assign each box a color and height based on this number. The
results of this process are depicted in Figure 8 and Figure 9.

We observe in these two-dimensional histograms, particularly in Figure 9,
that there appears to be a negative linear relationship between median Gauss
curvature and median local area. That is, as median Gauss curvature increases,
median local area decreases. This observed relationship and other similar ones
present in the histograms of other statistics lead us to hypothesize that there
is a linear relationship between each curvature statistic and the corresponding
local area statistic.

We are most interested in the existence of a relationship between the medians
of each curvature and local area. Of all five statistics computed, the median
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Figure 8: A two-dimensional histogram of median Gauss curvature vs. median
local area with frequency indicated by color and height

Figure 9: A two-dimensional histogram of median Gauss curvature vs. median
local area with frequency indicated by color
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is least sensitive to statistical outliers introduced that arise from numerical
artifacts introduced during data acquisition process and the inherently fine scale
of our approximations.

4.2 Correlation Coefficients

To test this hypothesis, we compute the correlation coefficients of various cur-
vature and local area statistics.

Definition 5. Let X,Y be square-integrable random variables. The correlation
coefficient of X and Y is

ρX,Y =
Cov (X,Y )
σXσY

=
E (XY )− µXµY

σXσY
. (6)

The correlation coefficient measures the extent of a linear relationship be-
tween two random variables. A correlation coefficient of one indicates a perfectly
positive linear relationship, a correlation coefficient of zero indicates no linear
relationship, and a correlation coefficient of negative one indicates a perfectly
negative linear relationship. Note that the magnitude of the slope of the linear
relationship is unimportant in relation to the correlation coefficient; only its sign
matters. This is easily seen by computing the correlation of X and Y = cX for
c ∈ R (ρX,Y = sgn (c)).

Definition 5, however, is only applicable to random variables whose distri-
butions are known. In order to approximate this coefficient with samples from
a population, we use the sample correlation coefficient.

Definition 6. LetXk, Yk be samples of two random variables for k = 1, 2, . . . , n.
The sample correlation coefficient of X and Y is

rX,Y =
1

(n− 1)SXSY

(
n∑

k=1

XkYk − nX̄Ȳ

)
, (7)

where X̄ and Ȳ are the sample means of X and Y , and SX and SY are their
sample standard deviations.

Note the similarity between the second term in Equation 7 and the numerator
in the second definition of the correlation coefficient in Equation 6.

An important consequence of making correlational inferences based on a
sample of a population is that noise in the sample data may cause the correla-
tion coefficient to be nonzero even when there is no linear relationship between
the two random variables. In fact, the probability of the sample correlation
coefficient being zero for any sample, correlated or not, is negligibly small. We
therefore must test the correlation coefficients we compute for statistical signif-
icance. We use a two-tailed t-test to test for significance and decide to reject
our hypothesis if its significance is less than .95.
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Curvature Mean Variance 1st quantile Median 3rd quantile
Gauss 0.051 0.024 -0.086 -0.25 -0.057
Abs. mean 0.32 0.12 0.036 0.26 0.51

Table 1: Correlation coefficients (with respect to corresponding statistic for local
area)

Curvature Mean Variance 1st quantile Median 3rd quantile
Gauss 0.79 0.45 0.97 ≈ 1 ≈ 1
Abs. mean ≈ 1 0.99 0.87 ≈ 1 ≈ 1

Table 2: Significance levels of the correlation coefficients in Table 1

4.3 Results

The sample correlation coefficients for each curvature statistic and the corre-
sponding local area statistic are shown in Table 1.

While none of these coefficients indicate a perfectly linear relationship, sev-
eral of them, most notably the median coefficients, are sufficiently different from
zero to warrant investigation. When we test the significance levels of these cor-
relation coefficients, we obtain the significance levels shown in Table 2. Table 2
shows that seven of the ten correlation coefficients are significant (that is, they
exceed our significance threshold of .95). Note that we have only computed
the significance levels to four significant digits, so a significance level of ≈ 1 is
identical to 1 to four significant digits.

These significance levels confirm our hypothesis that there is a significant
correlation between curvature and local area. We are particularly interested in
the high (≈ 1) significance of the median correlations, as these were the statistics
with which we were most concerned.

In Table 1 we are particularly interested in the negative correlation between
Gauss curvature and local area. We hypothesize that as Gauss curvature in-
creases, the surface locally resembles an increasingly curved paraboloid, causing
the local area to decrease. In order to account for this type of relationship be-
tween Gauss curvature and local area, we consider a new set of statistics that
measure the deviation of the local area of the cortical surfaces from the local
area of a plane. This deviation is quantified by the magnitude of the relative
local area. We repeat the statistical procedures detailed above, but instead of
considering Gauss curvature, we consider the absolute value of Gauss curvature,
and instead of considering local area, we consider the magnitude of the relative
local area. The results of this analysis are shown in Table 3 and Table 4.

11



Curvature Mean Variance 1st quantile Median 3rd quantile
Abs. gauss 0.040 0.034 0.050 0.172 0.402
Abs. mean 0.275 0.118 0.052 0.190 0.422

Table 3: Correlation coefficients (with respect to corresponding statistic for the
magnitude of the relative local area)

Curvature Mean Variance 1st quantile Median 3rd quantile
Abs. gauss 0.702 0.628 0.805 ≈ 1 ≈ 1
Abs. mean ≈ 1 0.998 0.827 ≈ 1 ≈ 1

Table 4: Significance levels of the correlation coefficients in Table 3

5 Conclusions

We are most interested in drawing conclusions from the data in Table 3 and
Table 4, since the use of the magnitude of the relative area in the computation
of these statistics allows use to compare the magnitude of curvature to the local
differences between the surface and a plane. We see in Table 4 that the correla-
tions between the medians of the absolute values of Gauss and mean curvature
and the magnitude of the relative local area are highly correlated. We conclude
that as curvature increases (in absolute value), the surface becomes increasingly
less planar, as one would expect intuitively from the classical definition of cur-
vature. This result provides new insight into the more recently developed local
area of Ratnanather et al. [4] and its relationship to more classical measures
of surface roughness (at least in the context of the cortical data that we have
studied.)
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