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Abstract—Online social media information is often used as a
proxy for unavailable or partially observed data on networks
of offline contacts. This, in turn, requires an understanding of
how close the proxy online structure is to the “true” offline
social network. Social media tools such as Meetup that col-
lect information about both online networks and their offline
counterparts are of particularly importance as they shed more
light on the (dis)similarity of online and offline contacts and
highlight its potential causes. In this paper we examine structural
(dis)similarities of the Meetup online and offline data, with a
particular focus on geographical differences. We introduce a new
measure called the event score to assess connections made by the
most socially active individuals, or social butterflies. We apply
the new social activity metric to determine which sorts of events
are attended most by social butterflies and to evaluate how this
aspect of the network structure differs across US cities.

Index Terms—big data; event-based social networks

I. INTRODUCTION

It is well known that the manner in which an agent such
as news, virus, behavior, etc, spreads throughout a community
strongly depends on the structure of connections between indi-
viduals in the social system [1, 11, 13, 35]. This phenomenon
is largely due to the fact that individuals tend to adopt new
ideas or behavior that are similar to the choices of their
peers [22, 24]. Nowadays modeling diffusion on interaction
networks is therefore attracting ever increasing attention in the
social sciences, statistics and computer science, especially in
view of its key role in developing efficient strategies for viral
marketing and for risk mitigation against emerging and re-
emerging diseases with a high virulence such as Ebola, Zika,
swine and avian flu. One of the primary and fundamental
questions in this field is to reliably evaluate and model the
underlying structure of social communication networks, that
is, to understand how people interact with each other. While
there are numerous studies on structures of online social
communication networks, because of limited data sources,
analysis of offline interaction structures is largely restricted
to closed or compact populations such as prisons, schools and
hospitals [5, 14, 16, 20, 30].

One of the largest and most accurate studies reflecting
a general structure of social mixing patterns is the Poly-
mod survey of 7,290 individuals in eight European countries
[28]. However, in view of cultural, city infrastructure, socio-

demographic and other differences, it is unclear how trans-
ferrable the Polymod mixing patterns are to other geographical
areas. Another way to collect data on social communication
is via various wearable wireless devices, for instance, mobile
phones, that measure the physical proximity between individ-
uals [2, 17, 34, 39]. On the other hand, there is a growing
trend in using data from online social media as a “proxy” for
unobserved offline contacts [2, 3, 10, 15, 23, 26, 33, 38]. The
wide availability and popularity of online platforms make such
a surrogate approach an attractive data collection channel in a
broad range of applications, especially, if no offline data are
available [6]. This, in turn, requires the understanding of how
representative or close the “proxy” online interaction structure
is to that of the “true” offline communication network. Hence,
social media tools that gather data about both online networks
and their offline counterparts are of particular importance as
they shed light on the (dis)similarity of online and offline
contacts and highlight its potential causes.

In this regard, publicly available data from the social
networking service Meetup are arguably unique for these
purposes in North America, as Meetup offers information on
both the online and offline interactions of its members. The
online network is constructed by connecting Meetup users who
belong to the same interest group, while the offline network is
constructed by connecting Meetup users who attend the same
event. Liu et al. [26] perform an analysis of the Meetup dataset
to examine properties of event-based social networks. Their
study suggests that the online network tends to be significantly
denser than the offline network, and the degree distributions of
both the online and offline networks are more heavy tailed than
a classical power law distribution. The findings in [26] also
indicate that Meetup users are likely to participate primarily in
events within 10 miles of their registered location, leading to
clustering. Most recently, the Meetup data have been analyzed
in a context of a social event recommendation system but
without an analysis of offline vs. online network structures [7].

This paper constitutes a pilot study that further explores
structural (dis)similarities of the Meetup online and offline
data, with a particular focus on geographical differences.
Rather than examining the entire US network, we refine
our scope to the level of six cities in the United States:
Chicago, Dallas, Los Angeles, Miami, New York City, and



Philadelphia. To our knowledge, analysis of the Meetup data
at a city-level scale has never been performed before. Our
paper is motivated by two overarching questions. First, we
are interested to evaluate whether online and offline networks
at a city level exhibit similar patterns. Our study concludes
that the degree distributions of the online networks are more
dispersed than the offline networks across all cities, but that
all the distributions share a heavier tail than the power law
distribution. We also conclude that a user in any of the six
cities we considered is more likely to join many groups online
than to interact with several groups offline.

Second, it is well known that extremely socially active
individuals can have a large impact on the spread of an agent
throughout a network [19, 25, 26]. Therefore, we are inter-
ested to determine whether socially active individuals behave
differently in different cities. For many classes of networks,
the influence of socially active individuals is encoded in the
tails of the degree distribution. However, the online and offline
Meetup networks are dominated by clique-based structures
since, absent any more fine-grained data, the online networks
are defined to include connections between all members of a
given online group and the offline networks include connec-
tions between all members that attend the same event. The
question is therefore to understand the web of connections
between the different groups in the online network and the
different events in the offline network. We suggest that this
web of connections is strongly influenced by social butterflies,
i.e. by the most socially active individuals. We introduce a new
measure to evaluate connections made by social butterflies,
namely the notion of an event score, and apply it to determine
which sorts of events are attended most by social butterflies.
Our results show that a large proportion of the attendees at
smaller events are social butterflies, whereas there tends to
be a much smaller proportion of social butterflies at larger
events. (Put another way, people who want to socialize and
meet someone to date are more likely to succeed at a smaller
event.) We also find that the distribution of such event scores
depends on the choice of city and persists even if we account
for city population and population density. While we can offer
no clear explanation for this result, our findings suggest that
there may be city-specific factors that influence how agents
propagate through a social network.

Despite being a pilot study, these findings are thus of
particular interest for city-specific biosurveillance and early
awareness platforms for real-time tracking and forecasting of
infectious diseases, based on harnessing various traditional
data sources (i.e., data from public health agencies) and non-
traditional information (i.e., health-related online social media
such as Twitter, Google trends, etc) [see, e.g., 8, 12, 21, 27,
29, 31, and references therein]. The differences our study
highlights between online and offline social networks across
cities also provides valuable insights for the development of
more effective targeted marketing strategies, survey sampling
procedures, disaster warning tools, and even dating and match-
making agencies [4, 9, 18, 32].

The paper is organized as follows. In Section 2 we provide

a description of the Meetup data, and in Section 3 we discuss
construction of online and offline networks and evaluate the
respective degree distributions. In Section 4 we introduce a
new notion of social activity, that is, an event score (ES)
and robust event score (RES), and in Section 5 we study
differences in event scores among the six US cities. The paper
concludes with discussion and future work (Section 6).

II. DESCRIPTION OF MEETUP DATA

Meetup is a social networking service that allows users
to form online groups and records users’ RSVPs to offline
events. Together these functionalities allow for the generation
of datasets containing information on both online interactions
in groups and offline interactions at events. For this study, we
used a publicly available data set compiled by Liu et al. [26]
from meetup.com. This data contains information on the group
membership and event attendance of over four million users,
collected between October 2011 and January 2012. To ensure
anonymity, each user is assigned a unique user ID. Similarly,
each group is assigned a unique group ID and each event
is assigned a unique event ID. The files in the dataset can
be partitioned into three categories: geographic, network, and
tag.

The two files in the geographic category give user locations
and event locations arranged as a matrix with three columns.
Each row contains a user ID (resp. event ID) followed by
the longitude and latitude coordinates of the user’s registered
home location (resp. event’s location).

There are three files in the network category, each arranged
as a matrix with two columns. The first file relates users and
groups, with each row consisting of a user ID followed by a
group ID. This file defines the members of each group, that is,
we say a user is a member of a group if the associated user and
group IDs appear on the same row of this matrix. The second
file relates users and events, each row containing a user ID and
event ID. This file defines the attendees at each event, that is,
we say a user attends an event if the associated user and event
IDs appear on the same row of this matrix. We observe that the
set of attendees at an event is the set of users who RSVP’d
“yes” to the event, and as such only gives an indication of
who physically attended the event. Some users who RSVP’d
“yes” may not attend the event, while other users who do
not RSVP “yes” may nevertheless still physically attend the
event. The third network file relates events and groups, each
row containing an event ID and a group ID. This file gives
information on which events were hosted by which groups.
Each event can be hosted by at most one group and some
events have no hosting group. Furthermore, users are able to
attend events hosted by groups of which they are not members.

There are three data files in the tag category, each arranged
as a matrix. A tag is a descriptive identifier which can be
assigned to a user or group. For example, a group of baseball
fans in New York may be tagged “baseball” or “Yankees”.
Each row of the first file associates a number (the tag ID) to
each descriptive tag (eg. “baseball”). Each row of the second
(resp. third) file consists of a user ID (resp. group ID) followed



by a tag ID. This allows users and groups to be identified by
their interests.

III. ONLINE VS. OFFLINE NETWORKS

Construction of Networks We used the Meetup data set
to study the network structure for six US cities: Dallas,
New York, Los Angeles, Miami, Chicago, and Philadelphia.
These cities were selected because of their large and diverse
populations. For each city we compiled a list of residents who
are Meetup users whose registered location was within the city.
For simplicity, the geographical extent of each city was defined
to be the circle in longitude-latitude space that is centered at
the city’s geographic center and whose area is equal to the
area of the city. The geographical centers and areas of each
city were obtained from wikipedia.

For each city we constructed two networks from the Meetup
data, an online network and an offline network. In each
network a vertex is a resident and an edge represents contact
between two residents. For the online network of a city, we
construct a single edge between two vertices if there is at
least one group to which the corresponding residents both
belong. For the offline network of a city, we construct a single
edge between two vertices if there is at least one event that
the corresponding residents both attend. Our assumption of
complete mixing at each event is reasonable since the average
event attendance ranged between 3.5 and 4.3 for all six cities,
which suggests that most events were small in size.

An inherent characteristic of these networks is that the set
of residents in a group or at an event forms a clique. A
clique is a group of vertices that are fully-connected to each
other. Figure 1 is a toy example of four cliques connected
by common vertices. These cliques would represent events in
an offline network or groups in an online network. Table III
presents the summary statistics on the online and offline
Meetup data for the six considered cities.
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Fig. 1. Toy example of network structure

Evaluating Degree Distributions In Figure 2, we show log-
log plots of the degree distributions of the online networks in
five of the cities we studied: Dallas, New York, Los Angeles,
Miami, Chicago, and Philadelphia. (Due to computational
limitations we do not present a network distribution for New
York City.) The large deviations from the linear fits (solid blue
lines) suggest that these degree distributions are more heavy

tailed than the classical power-law distribution, which mirrors
patterns over the entire United States [26]. The city whose
online degree distribution is closest to a power law distribution
is Miami, which is the smallest of the five cities.

Fig. 2. Online degree distribution for major cities

Figure 3 shows the respective log-log plots of the degree
distributions of the offline networks. The results suggest that
similarly to the online networks, the offline degree distribu-
tions do not follow the usual power law distribution either but
are noticeably more heavy tailed.

IV. QUANTIFYING SOCIAL ACTIVITY

Our analysis of social activity of Meetup users and their
interaction patterns are based on the two metrics: active
membership and event score.

A user is an active member in a group if the user attends
an event hosted by the group. Since events are not restricted
to members of the hosting group, a user can be active in a
group without being an online member of the group. We also
found that some events had no hosting group. We treated these
events as all being hosted by a single online proxy group. In
Figure 4 we compare the number of memberships and active
memberships of the residents in each city. Each data point in
the plot represents a resident. The number of memberships for
each user was determined by scanning through the user/group
ID matrix, and counting the number of times a user’s ID
appeared. To calculate the number of active memberships
of a user, we identified all events the given user attended
and recorded the ID of the groups hosting these events. The
number of active memberships is then the cardinality of this
set of group IDs.

The purpose of the active membership metric is to compare
how users behave online versus offline. We observe that a



TABLE I
SUMMARY STATISTICS OF ONLINE AND OFFLINE MEETUP DATA IN THE SIX US CITIES.

City Miami Dallas Philadelphia Chicago LA NYC
# of users 7,537 29,218 26,979 66,148 78,884 314,510
# of events 14,505 37,521 33,339 68,650 107,468 227,934
# of groups 249 623 565 1,126 2,093 4,753

Fig. 3. Offline degree distribution for major cities

Fig. 4. Membership vs Active Membership

number of users who hold membership in many groups is
larger than a number of users who have many active group
memberships. This result is to be expected since it is easier
to join an online group compared to the effort of traveling to
attend offline events.

To quantify offline social activity, we define the measure
of social activity of a user to be the number of events the
user attended. We refer to those users with larger measures
of social activity as social butterflies. It is important to note

that since there exists no widely agreed upon measure of
social activity, such measures often need to be tailored to the
structure of dataset. Our definition is ambiguous in the sense
that a social butterfly who attends N events with the same
group of people (e.g., weekly meetings of a chess club) has
the same measure of social activity as a user who attends N
different sorts of events hosted by different groups. However,
we argue that despite this ambiguity, this metric of social
activity is plausible since in both cases such social butterflies
have a higher probability of transmitting an agent than users
with lower measures of social activity. For example, a social
butterfly who attends many chess club events tends to transmit
information from one club meeting to the next, while a social
butterfly who attends meetings hosted by many different online
groups tends to spread information from one group of users to
another. In the future we plan to distinguish social butterflies
with respect to the size and type of events they tend to
participate in.

Our notion of social butterfly is also closely related to the
notion of the betweenness centrality of a node in a social
network. The betweenness of a node counts the number of
shortest paths between pairs of nodes that pass through the
given node, relative to the total number of shortest paths
between each pair [36]. Individuals with larger betweenness
centrality play an important role in the transmission and dif-
fusion of ideas and infectious agents. Another closely related
notion is that of an influential user of a social network that
can be measured as the impact on others’ activity levels (see
discussion in [36, 37] and references therein), which requires
data on how information is propagated in the network as a
function of time. Since the events in the Meetup database
we relied on for this study include neither the time at which
the event occurred nor a more detailed graph structure, it
is not feasible to calculate the influence or the conventional
betweenness centrality of Meetup users. For these reasons,
and because of the particular structure of the Meetup offline
network described in Section 3, for the results in this paper we
use our measure of social activity as a proxy for betweenness
centrality and influence.

In Table II we show the percentiles of user attendance. We
observe that most users have only attended one or two events,
while the most active users, the social butterflies, attended
hundreds or thousands of events. The percentiles of event
sizes, that we show in Table III, reveal that most events are
attended by at most four users, and the largest events are
attended by hundreds of users.

To examine whether most socially active individuals tend
to cluster together, that is, whether social butterflies are more



TABLE II
USER ATTENDANCE (AGGREGATED OVER ALL SIX CITIES).

Percentiles 0% 25% 50% 75% 90% 99% 100%
User Attendance 1 1 2 6 16 95 4829

TABLE III
EVENT SIZE (AGGREGATED OVER ALL SIX CITIES).

Percentiles 0% 25% 50% 75% 90% 99% 100%
Event Size 2 2 4 8 15 56 722

likely to attend larger events or smaller events, we introduce
two new measures of event activity: event score and robust
event score. In particular, we assign such a score to each event
to evaluate social activity of its attendees. Given an event, we
define the event score (ES) as

ES =
1

N

N∑
j=1

Xj , (1)

where N is the number of attendees at the given event and
Xj is the measure of social activity of the j-th attendee of the
given event.

In Figure 5 we show event score vs. event attendance for
the six cities in our study. Rather than showing a scatter
plot of event score—event attendance pairs, we plot the 95-th
percentile of the event score as a function of event attendance.
Specifically, these curves are obtained by applying an additive
quantile regression model for the 95-th percentile. The results
indicate that events with smaller attendance tend to have
higher event scores, whereas larger events have noticeably
lower event scores. Since the event score is an average of the
attendees’ social activity measure, a high event score indicates
that an event is attended by relatively large number of social
butterflies. Consequently, we conclude that social butterflies
tend to be attracted to a larger number of smaller events and
to be surrounded by similarly active individuals; and in reverse
that larger events tend to be dominated by less social individ-
uals. This is further supported by our second robust median-
based scoring method (see discussion below). We observe that
this conclusion needs to be balanced with the data in Table III
which shows that larger event sizes are more frequent than
smaller ones. However, events are ultimately organized by
people, and the high frequency of smaller meetings may result
from a tendency of social butterflies to organize smaller rather
than larger events. This finding has significant implications
for social diffusion models, and in particular to understanding
spread of agents through a societal structure.

The second scoring method, the robust event score (RES)
is given by

RES = med{Xj : j = 1, 2, ..., N} (2)

The idea of RES to diminish the impact of outliers when
evaluating social activity. In Figure 6 we show the 95-th
percentile of the RES as a function of the event attendance.
We use the same cut-offs as in Figure 5. We observe a similar
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Fig. 5. Event Score vs Attendance

relationship between RES and event attendance as we find
for ES and event attendance. The results shown in Figures 5
and 6 suggest that there are noticeable differences between
cities. To further assess these differences in social activity, in
Figures 7 and 8 we show boxplots of ES and RES, respectively,
for each city where the cities are ordered in terms of their
population size. We find that despite being the city with the
least population, Miami exhibits almost the same variability
as the second largest city, Los Angeles. In turn, Dallas (the
second smallest city in terms of population size) has the most
concentrated distribution, while New York City (the largest
city) exhibits the most dispersed distribution. In the next
section we present the results of a formal hypothesis test for
the homogeneity of ES and RES.

V. STATISTICAL ANALYSIS OF EVENT SCORES ACROSS
U.S. CITIES

Here we formally test the hypothesis that Meetup users
in the six major US cities behave similarly (H0) vs. that
there exist differences in their social dynamics. We start from
evaluating mean ES and RES among the cities. Since Dallas,
New York, Los Angeles, Miami, Chicago, and Philadelphia
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Fig. 7. Event Score Box Plot

have different population sizes and densities, we start by
accounting for these demographic factors as covariates.

In particular, we first regress event scores vs. population
size and density, which as expected, suggest significance of
both demographic variables. We then apply a one-way analysis
of variance (ANOVA) to the resulting residuals to test for
difference among cities. The ANOVA test rejects the null
hypothesis, and the city effect is found to be highly statistically
significant. To account for nonnormality and heteroscedasity
of residuals, we also apply logarithmic transformations prior to
ANOVA as well as a non-parametric distribution-free Kruskal-
Wallis test. In both cases, we find that the city effect remains
highly statistically significant. In Figure 9 we show boxplots
of the model residuals subject to the logarithm transformation
of ES and accounting for demographic factors. We find that
Miami (the city with the lowest population) exhibits almost
the same variability as Philadelphia (the third smallest city).
At the same time, the main body of residuals distributions (i.e.,
the area between the lowest and highest quartiles) in Dallas,
Chicago, Los Angeles, and New York is similar. Analogous

Fig. 8. Robust Event Score Box Plot

results are obtained for RES and are omitted for brevity.
At this point, we cannot offer a plausible explanation

for such dissimilarities among Meetup users who reside in
different cities. We may hypothesize that such dissimilarities
might be due to city infrastructure, ethnic and other socio-
demographic differences etc. (To further investigate these
patterns, we are currently extending our study to other large
metropolitan areas.) Nevertheless, these findings indicate that
propagation of news, viruses, behaviors and trends are likely
to differ substantially between cities and need to be accounted
for in social diffusion models and survey designs.

Fig. 9. Residuals Box Plot

VI. CONCLUSION

The availability of the Meetup data opens new horizons in
understanding the structure and organization of both online
and offline social networks. The current pilot project is an
attempt to shed some new light on the (dis)similarity of
patterns of online and offline interactions in various US cities.
Despite being a preliminary analysis, the results we obtained
have a number of important implications. First, for most social
networks obtaining the complete network is problematic and
the assessment is usually based on a network sample. As
shown in [4], sampling methodology strongly affects the bias
of the network estimates drawn from the sample. The effect
of such bias could be practically studied when the entire
network is known. Understanding the structure of close to



complete online and offline Meetup networks provides a way
to compare, evaluate and control sampling methods when only
a sample of the networks is known. One of the examples is
sampling based on the Meetup events. If the majority of events
are small in size, sampling from a small group will likely
lead to a biased representation due to dominance by “social
butterflies”. Second, differences in social activity among cities
need to be accounted in constructing offline networks of social
contacts based on synthetic populations [8, 27, 29, 31].

In the future we plan to extend this analysis in multiple
directions. To increase understanding of the relationships be-
tween the structure of online and offline Meetup datasets, we
will evaluate event scores with respect to the sizes and types
of events and interest groups, and will study space-time and
multi-attribute networks of Meetup events and users.

By using quantile regression of offline vs. online degree
distributions, we can obtain city-wise factors for relating
offline structure with its proxy. Another interesting direction
is to investigate further stratification of the Meetup data in
terms of group interests and its respective dynamics across
the United States. Finally, we plan to use graph matching
procedures to relate other online sources such as Facebook and
Twitter to that of online Meetup and then to explore utility of
online Meetup as a link between a richer set of online networks
and the respective offline interaction patterns.
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