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Abstract Trace gas sensors have a wide range of applications including air quality monitoring, industrial
process control, and medical diagnosis via breath biomarkers. Quartz-enhanced photoacoustic spectroscopy
and resonant optothermoacoustic detection are two techniques with several promising advantages. Both
methods use a quartz tuning fork and modulated laser source to detect trace gases. To date, these comple-
mentary methods have been modeled independently and have not accounted for the damping of the tuning
fork in a principled manner. In this paper we discuss a coupled system of equations derived by Morse and
Ingard for the pressure, temperature, and velocity of a fluid that accounts for both thermal effects and
viscous damping, and which can be used to model both types of trace gas sensors simultaneously. As a first
step towards the development of a more realistic model of these trace gas sensors, we derive an analytical
solution to a pressure-temperature subsystem of the Morse-Ingard equations in the special case of cylindri-
cal symmetry. We solve for the pressure and temperature in an infinitely long cylindrical fluid domain with
a source function given by a constant-width Gaussian beam that is aligned with the axis of the cylinder. In
addition, we surround this cylinder with an infinitely long annular solid domain, and we couple the pressure
and temperature in the fluid domain to the temperature in the solid. We show that the temperature in
the solid near the fluid-solid interface can be at least an order of magnitude larger than that computed
using a simpler model in which the temperature in the fluid is governed by the heat equation rather than
by the Morse-Ingard equations. In addition, we verify that the temperature solution of the coupled system
exhibits a thermal boundary layer. These results strongly suggest that for computational modeling of res-
onant optothermoacoustic detection sensors, the temperature in the fluid should be computed by solving
the Morse-Ingard equations rather than the heat equation.

Keywords trace gas sensing - optothermal detection - mathematical modeling - photoacoustic spec-
troscopy - viscothermal effects

1 Introduction.

Many applications in science and engineering, such as the design of trace gas sensors, hearing aid
transducers, and micro-electrical-mechanical devices, involve the interaction between a pressure
wave and a thermal wave on a very small scale [8,17]. Models that use either the acoustic
wave equation or the heat equation do not account for viscothermal effects [8]. Instead, by
using a set of coupled equations involving pressure, temperature and fluid velocity that are
derived from the Navier-Stokes equations, one can examine thermal and viscous boundary layer
phenomena and more accurately calculate resonances [15,16]. In a study of reduced models
for thermal phenomena near thin bodies in a fluid, Lavergne et al. [22] showed that thermal
boundary layer effects can be significantly different for planar membranes than for cylindrical
fibers. In their modeling of hearing aid receivers, Cordioli et al. [8] show that experimentally
measured resonance frequency curves agree much better with results obtained from models that
incorporate viscothermal effects than with models based on the acoustic wave equation.
Analytical solutions to the coupled pressure-temperature-velocity system have been derived
by several authors for a variety of applications, and used to determine the limitations of the
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acoustic wave equation at small scales where viscous and thermal effects may be significant.
For example, Morse and Ingard [29] derived plane wave solutions both in free space and near
a planar boundary, and used them to determine the width of viscous and thermal boundary
layers. Joly et al. [16] studied admittance properties for the reflection of a pressure wave incident
on a rigid wall, accounting for viscous and thermal effects in the fluid and thermal diffusion
into the wall. For their study of photoacoustic effects in small droplets, Cao and Diebold [6]
derived a spherically symmetric solution of a coupled system for pressure and temperature
with a spatially uniform heat source, and applied the solution to study the limitations of the
acoustic wave equation when the radii of the droplets approaches the characteristic lengths for
fluid viscosity and thermal conduction.

In this paper, we derive an analytical solution to a coupled system of equations derived by
Morse and Ingard for the pressure and temperature variations in a fluid due to a heat source that
is internal to the fluid. We use this solution to study how the interaction between the pressure
and temperature near a fluid-solid interface gives rise to a thermal boundary layer that affects
the diffusion of heat into the solid. Our motivation for studying this problem is to investigate
whether the coupled equations for pressure, temperature, and fluid velocity can be used to
improve computational models of a class of trace gas sensors that employ a quartz tuning fork
to detect the weak acoustic pressure waves and thermal disturbances that are generated when a
trace gas is heated by a laser [19,20]. The results we will present in this paper demonstrate that
for the modeling of a trace gas sensor designed to detect thermal disturbances, it is necessary to
solve the coupled pressure-temperature system rather than simply relying on the heat equation
in the fluid, as was done in previous modeling work [36].

Trace gas sensors are currently being developed for a diverse range of applications includ-
ing air quality monitoring, industrial process control, medical diagnosis via breath analysis,
and explosives detection [9,23,38]. An important class of trace gas sensors are photoacoustic
spectroscopy (PAS) sensors which detect the weak acoustic pressure waves that are generated
when optical radiation from a laser is periodically absorbed by molecules of a trace gas [2,27].
A PAS sensor that has garnered much recent attention is the quartz-enhanced photoacoustic
spectroscopy (QEPAS) sensor, which employs a quartz tuning fork to detect these acoustic
pressure waves via the piezoelectric effect [19,33].

In addition to generating an acoustic pressure wave, the periodic interaction between the
laser radiation and a trace gas also generates a thermal diffusion wave in the fluid. The same
tuning fork can be used to detect this thermal diffusion wave via the indirect pyroelectric
effect [20,31]. This trace gas sensing modality is referred to as Resonant OptoThermoA-coustic
DEtection (ROTADE). Because the thermal diffusion wave attenuates very rapidly, in most
operating regimes the acoustic wave has a much greater effect on the tuning fork than does the
thermal wave. However, when the ambient pressure is sufficiently low and the laser source is
positioned close enough to the surface of the tuning fork, the thermal wave can dominate [20,
36]. Since the lines in the absorption spectrum become more distinct as the ambient pressure is
lowered, ROTADE sensors provide more wavelength selectivity than do QEPAS sensors, which
is important for some applications.

QEPAS and ROTADE sensor technologies are based on the following physical processes.
A laser generates optical radiation at a specific absorption wavelength of the trace gas to be
detected. The optical energy absorbed by the trace gas is transformed into vibrational energy of
the gas molecules. By sinusoidally modulating the interaction between the laser radiation and the
trace gas, a thermal diffusion wave is generated in the ambient fluid. In addition, vibrational-to-
translational energy conversion processes at the molecular level generate an acoustic pressure
wave. In a QEPAS sensor, the acoustic pressure wave induces a mechanical vibration of the
tuning fork, which is in turn converted to an electric current via the piezoelectric effect in
quartz. QEPAS systems are highly sensitive trace gas sensors which can detect minute amounts
of trace gas at the parts-per-billion level [25,39]. This sensitivity is achieved by directing the
laser beam between the tines of the tuning fork (see Figure 1, left) and choosing the laser
modulation frequency to excite a strong resonance in the tuning fork. Since the entire process
is linear, the amplitude of the received electrical signal is proportional to the concentration of
the trace gas. In those operating regimes for which the thermal diffusion wave dominates over
the acoustic pressure wave on the surfaces of the tuning fork, the device acts as a ROTADE
sensor. When the excited molecules collide with the surface of the tuning fork, their vibrational
energy is transferred to the tuning fork in the form of heat. The thermal energy transferred to
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the surface then diffuses into the interior of the tuning fork where it induces a mechanical stress
and displacement of the tines of the tuning fork. In summary, the ROTADE sensor utilizes
a combination of the thermoelastic effect, in which heat generates mechanical stress, and the
piezoelectric effect, in which this stress generates an electrical signal. The combination of these
two effects is called the indirect pyroelectric effect [31].

Fig. 1 Schematic diagram of a QEPAS sensor (left) and a ROTADE sensor (right). Each figure shows the quartz tuning
fork (mustard) and laser source (pink).

At low ambient pressure, the same tuning fork can act as both a QEPAS sensor and a
ROTADE sensor. In this situation the placement of the laser beam relative to the tuning fork
dictates which sensing modality is dominant. When the laser is directed near the top of the tines
of the tuning fork the QEPAS signal is dominant (see Figure 1, left), whereas when the laser
beam is directed near the base of the tuning fork the ROTADE signal is dominant (see Figure 1,
right). Laboratory experiments suggest that as the laser source is moved down from the top
of the tuning fork to its base, at some point the QEPAS and ROTADE signals destructively
interfere with one another [20,36].

QEPAS and ROTADE sensors have several promising advantages over traditional trace gas
sensors, including their small size (1000 times smaller than traditional sensors), immunity to en-
vironmental noise, and improved sensitivity [20,23,38]. The high degree of sensitivity of QEPAS
and ROTADE sensors is primarily due to the very strong resonances of tuning fork oscillators.
In general for an oscillator, smaller damping effects result in larger resonance amplitudes and
narrower resonance frequency widths. Physically realistic modeling of damping is therefore crit-
ical for accurate computational modeling of QEPAS and ROTADE sensors [12]. In particular,
since the overall damping effect depends on the geometric configuration of the system, such
models need to allow for the geometry of the tuning fork to be varied. Firebaugh et al. [12,
13] obtained reasonable agreement between a computational model and experimental data in
a study comparing the performance characteristics of several different tuning fork geometries
for a QEPAS sensor. Previous work with a simplified model of a ROTADE sensor by Petra
et al. [36] demonstrated that computer simulations can be used to optimize the tuning fork
geometry in an efficient manner. However, ad-hoc damping models were used in all these stud-
ies. For example, Petra et al. [35,36] incorporated an ad-hoc damping term into the equations
describing the resonant vibration of the tuning fork, in which the damping constant was fitted
to experimentally measured data from a single tuning fork.

The major source of damping in tuning fork oscillators is viscous damping due to the motion
of the oscillator through the ambient fluid [30]. Kokubun et al. [18] developed a theoretical
model of the viscous damping of a tuning fork in which the drag force is calculated using fluid
mechanics. By approximating a tuning fork by a string of spherical beads, they were able to
apply an analytical formula for the drag force on a sphere [21] to approximate the drag force
on a vibrating tuning fork.! However, because of its ad-hoc nature, Kokubun et al. used a
curve fitting algorithm to determine the radius of the sphere in the model using data obtained
from experimental measurements of specific tuning forks. Firebaugh et al. [12,13] obtained

1 These formulae were obtained by solving the incompressible linear Navier-Stokes equation for viscous fluid flow around
a sphere.
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qualitative—though not quantitative—agreement with experiments using a finite-element model
of a QEPAS sensor that incorporated viscous damping of the tuning fork using the approach
of Kokubun et al. They attributed the lack of quantitative agreement to the oscillating sphere
approximation used to model the viscous damping of the tuning fork.

In this paper, we take the first step towards the development of a joint mathematical model
for QEPAS and ROTADE phenomena that more accurately incorporates viscous damping and
thermal conduction effects. This new model will in the future allow for numerical optimization
of the geometric parameters of the tuning fork in these sensors. Viscous and thermal effects
in an acoustic fluid play a significant role only near the boundaries of the fluid. For harmonic
plane waves, the thickness of the viscous and thermal boundary layers are each on the order of
10 pm at the 32.8 kHz operating frequency of the sensor [29]. By comparison, depending on the
design of the system, the smallest characteristic length of the geometric domain ranges from 30-
100 pm [10]. Because the thickness of the boundary layers is within an order of magnitude of the
smallest characteristic length of the geometric domain, rather than treating the boundary layer
separately [3], we instead use a modification of the classical equations for acoustic pressure and
heat conduction in the entire fluid domain that correctly accounts for thermal and viscous effects.
This modification was obtained by Morse and Ingard [29], who linearized the Navier Stokes
equations to derive a coupled system of linear partial differential equations for the acoustic
pressure, temperature, and fluid velocity that includes the effects of fluid viscosity and thermal
conduction. By decoupling the equations for the fluid velocity from those for the other two
variables, they obtained a pair of equations for the pressure and temperature. The pressure
and temperature equations are coupled to each other through a term that involves the viscosity
and thermal conduction parameters of the fluid. In this paper, we add a source term to the
temperature equation which enables us to model the generation of the thermal diffusion wave
and its conversion to an acoustic pressure wave in photoacoustic spectroscopy and resonant
optothermoacoustic trace gas sensors [28].

As a first step towards our goal of developing a realistic model of the coupled thermal and
pressure waves, in this paper we derive an analytical solution to the Morse-Ingard equations for
pressure and temperature in the special case of cylindrical symmetry. Specifically, the simplified
situation we consider is to solve the Morse-Ingard equations in an infinitely long cylindrical
fluid domain with a source function given by a constant-width Gaussian beam that is aligned
with the axis of the cylinder. Furthermore, we surround this cylinder with an infinitely long
annular solid domain, and we couple the pressure and temperature in the fluid domain to the
temperature in the solid, which we model using the heat equation. Because of the symmetries
inherent in this simplified problem, the solutions of the coupled system are functions only of
the radial distance from the axis of the cylinder. In particular, the analytical solution we derive
does not capture any variations of pressure and temperature along the axis of the cylinder. We
will use the resulting solution to gain insight into how the thermal boundary layer in the fluid
affects the temperature variation in the solid near the fluid-solid interface. We show that both
the pressure and temperature variations in the fluid are the sum of a small scale thermal mode
and a large scale acoustic mode. For the pressure, we show that the acoustic mode dominates
over the thermal mode. However, we will show that the temperature in the solid near the fluid-
solid interface can be at least an order of magnitude larger than that computed using a simpler
model in which the temperature in the fluid is governed by the heat equation rather than by
the Morse-Ingard equations.

Globally, the geometry of a tuning fork is very different from the geometry of an infinitely
long annular domain. However, experiments and simulations have shown that the performance
of a ROTADE sensor is to a large extent determined by the temperature in that region of the
tuning fork that is closest to the laser beam [34,36]. Moreover, in a ROTADE sensor, the laser
beam is positioned close to the U-shaped surface near the base of the tines of the tuning fork,
and this surface is locally well approximated by the boundary of a half-cylinder (see Figure 1,
right). In laboratory experiments of ROTADE sensors, the acoustic pressure of the fluid is
not resonant. Rather, the frequency of the source is chosen to excite a mechanical resonance
in the tuning fork. Similarly, although the cylindrical fluid domain of the simplified system is
enclosed by the solid, the frequency of the source does not excite an acoustical resonance in the
radial direction. Nevertheless, since the pressure variation decays slowly it depends on the global
geometry of the system. In summary, although the global geometry of the simplified system is
different from that of a trace gas sensor system, the local similarities between the two systems



Solution to Coupled Pressure-Temperature Equations 5

are strong enough that our conclusions about the temperature in the solid should carry over
to ROTADE sensors. In particular, our results strongly indicate the necessity of modeling the
temperature in the fluid using the Morse-Ingard equations, rather than using the heat equation.
Indeed, in our previous modeling of ROTADE sensors that was based on the heat equation in
the fluid, we could only obtain agreement between normalized signal amplitudes rather than
between the amplitudes themselves [36]. While there are several factors that could contribute
to this lack of agreement, the discrepancy between the results obtained using the Morse-Ingard
equation and the heat equation in the fluid is likely one of them.

In Section 2 we briefly review the derivation of the Morse-Ingard equations. In Section 3
we derive an analytic solution of these equations. In Section 4 we describe the finite-element
computation we performed to verify the correctness of the analytic solution. In Section 5 we
present the results we obtained using both the analytical solution and finite-element method.
Finally, in Section 6 we summarize the results and discuss future work.

2 Model.

In previous work, Petra et al. [34-37] developed separate models for QEPAS and ROTADE
sensors. In the case of a QEPAS sensor, in which a pressure wave generates the electrical signal,
Petra et al. used the acoustic wave equation to model wave propagation [35]. Similarly, in
the case of a ROTADE sensor, in which periodic thermal expansion generates the electrical
signal, they used the heat equation to describe the diffusion of the gas [36]. In this paper,
we simultaneously model the temperature and pressure in an acoustic fluid using a coupled
system of equations derived by Morse and Ingard [29, p. 279-282]. These equations are obtained
from a system of equations for pressure, temperature, and fluid velocity that was independently
obtained by Morse and Ingard [29], Miklos, Shéfer and Hess [28], and Joly et al. [16].

We consider a fluid that in the absence of a heat source has uniform density, pressure, and
temperature, and is everywhere at rest. When heat energy is introduced into the fluid, for
example by the interaction between a laser and a trace gas, the thermodynamic quantities vary
from their ambient values. To derive equations for the variation of pressure, temperature, and
velocity we begin by considering the linearized Navier-Stokes equations,

v 1
Pogy = —VP + <?7+3,u) VV-v)+uV(V-v)—u(Vx(Vxv)), (1)
where v is the fluid velocity, pg is ambient density, ¢ is time, P is the variation from the ambient
pressure, and p and n are the viscosity and bulk viscosity of the fluid, respectively. By the
Helmholtz Decomposition Theorem, we can express the fluid velocity in the form v = v, 4+ v
where the lamellar part, vy, is curl free and the rotational part, vy, is divergence free.2 Because
VP is also curl free, we can use this decomposition to obtain separate equations for the lamellar
and rotational parts:

ove 4

P = VP + <n + 3u) V(V-vy), (2)
0

Pt = = (V x (V x V). (3)

In addition to the Navier-Stokes equations, we consider the continuity of mass flow equation,

ap
V. .v= 4

where p is the variation of the ambient density, pg, and the continuity of heat flow equation,
¢
ot

2 A theorem in the text of Chorin and Marsden [7] states that for a vector field, v, on a domain 2 C R3, the Helmholtz
decomposition, v = vy + v¢, is unique, provided that we also assume that v; is tangential to the boundary surface, 92.

To— = KV2T, (5)
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where 7T is the variation from the ambient temperature, 7o, ¢ is the variation of the entropy,
and K is the thermal conductivity. We also consider the equation of state,

p=poks (P —aT), (6)

where v is the ratio of specific heats and kg is the adiabatic compressibility. In addition, the
parameter, , is given by a = poc? /v, where c is the speed of sound and 3 is the coefficient of
thermal expansion of the fluid. Finally, the equation for the variation of the entropy is given by

_C v—1
R (7)) "

where C), is the specific isobaric heat capacity of the fluid. Equations (2)-(7) form a system of
six equations for the fluid velocity and the variations in the pressure, temperature, density, and
entropy. Eliminating ¢ and p from Equations (4)—(7) and focusing on the temperature variation,
T, and pressure variation, P, of the fluid, we obtain:

0 v—1 20
a <T— ’)/OZP> —lth T—S, (8)
b aif 9 o2 _ 2P
@<mzlwmv (P—aT) - VP =0, (9)
Ove _ W0 p
gy = V{“ - 5P ‘m]’ (10)

where § = S (x,t) is the amount of heat per unit time provided by the source, ¢ is time, and
x is position. We added the source term, S, to Equation (8) to model the heating of the fluid

poc

Iy, = K/pocC) is the thermal characteristic length. We refer to Equations (3) and (8)—(10) as
the Morse-Ingard equations. Equations (8) and (9), which are independent of the fluid velocity,
v, can be solved as a system of two equations to determine the temperature and pressure
variations. In this paper we focus on Equations (8) and (9), since the tuning fork in a trace gas
sensor is designed to detect the pressure and temperature variations. For a tuning fork sensor,
it is only necessary to solve for the fluid velocity in situations where the damping of the tuning
fork cannot be obtained from experimental measurements. However, in future computational
models we will also include Equations (3) and (10) for the fluid velocity. The fluid velocity is
needed to impose the conditions at the interface between the fluid and tuning fork that are
required to compute the effect of the viscous damping of the tuning fork by the fluid.

Since the tuning forks used in QEPAS and ROTADE sensors are sharply resonant, it is
reasonable to assume that the source, S, is harmonic in time [35]. Consequently, we model the
source as an axially symmetric Gaussian beam of width o of the form

S(r,t) =R{Cexp [—7‘2/ (202)] exp(—iwt) } (11)

by the laser [16,28]. The parameter I, = (% + g) - s the viscous characteristic length, and

where r is radial distance from the axis of the laser beam and R(z) denotes the real part of
a complex number, z. The angular frequency, w, is given by w = 27 f, where f is the wave
frequency. This frequency is chosen to match the resonance frequency of the tuning fork, which
is typically f = 32.8 kHz. The parameter, C, is given by C' = a.gWp,/ (47rpoC'pa2) where aeg is
the effective absorption coefficient (i.e., the fraction of radiation absorbed per unit length as it
passes through fluid), and Wy, is the laser power [35].

To enable us to derive cylindrically symmetric solutions, we solve the Morse-Ingard Equa-
tions (8) and (9) with a source function given by Equation (11) in an infinitely long cylindrical
fluid domain, 2q4q, of radius, R, that is aligned with the axis of the laser beam. Furthermore,
we couple the pressure and temperature variations in the fluid to the temperature variation
in an infinitely long annular solid domain, (244, surrounding the fluid with inner radius, R,
and outer radius, Rs. We show a cross section of the composite domain, 2 = 2quiq U Zsoliq In
Figure 2.

We will use the resulting analytical solution to gain insight into how the thermal boundary
layer in the fluid affects the temperature variation in the solid near the fluid-solid interface.
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We anticipate that the behavior of the temperature variation in the solid near the fluid-solid
interface obtained on the simplified geometric domain will be similar to that in the tuning fork
of a ROTADE sensor. In particular, experiments have shown that that the performance of a
ROTADE sensor is to a large extent determined by the temperature in that region of the tuning
fork that is closest to the laser beam [34,36]. Moreover, since the laser beam is positioned close
to the U-shaped surface near the base of the tuning fork, locally in this region, the boundary is
well approximated by the boundary of a half-cylinder (see Figure 1, right).

Fig. 2 Cross section of a cylindrical fluid domain of radius, R, surrounded by an annular solid domain with outer radius,
Rgs.

Because of the cylindrical symmetry of the both source function, S, and the composite
domain, 2 = 2q4q U Psolid, the temperature and pressure variations are functions only of the
radial distance, r, from the axis of the laser beam. Moreover, since we are only interested in
time-harmonic, steady-state solutions, we can express the pressure, temperature, and source in
the form

P(r,t)=R{P(r)e ™}, T (r,t) =R{T (r)e ™"}, S(rt)=R{S(r)e ™}. (12)

Under these assumptions, the coupled system of time-dependent partial differential equations (8)
and (9) reduces to the coupled Helmholtz system of second-order ordinary differential equations,

-1
1heV2T + iw (T S ) —_5, (13)
Yo
Y .

V2P + 2 (w2 — zlvchQ) (P—aT) =0, (14)
where the Laplacian operator of a function, F = F(r), is given by V?F = F" 4 %F’. Here
F' =dF/dr.

The temperature, 7g, in the solid, {2)iq, satisfies the heat equation
0
% — DsV*Ts =0, (15)

where Dg is the thermal diffusivity of the solid. Assuming a time-harmonic solution, we have
that Ts(r,t) = R{Ts (r) e~} and so the Helmholtz form of Equation (15) is

1 w
T+ 2Th + 2T =0, 16
S+r S+DS s (16)

which has the solution )
Ts (r) = dyJo (kr) + doHY (kr) . (17)
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Here k = | /1% and Jj is the zeroth order Bessel function of the first kind and H(gl) is the zeroth
order Hankel function of the first kind [32]. We express the solution using this particular linear

combination because Jy and H(gl) form a numerically satisfactory pair of cylinder functions in
the upper half of the complex plane [32, 10.2(iii)].

In Section 3, we will derive a formula for the general solution of Equations (13) and (14) in
terms of Bessel and Hankel functions. Because these equations are both of second order, the
general solution will have four unknown constants. In addition, the temperature solution in the
annulus given by Equation (17) has two unknown constants, d; and da. To determine these six
constants we impose the six conditions,

T(0) < o0, (18)
P (0) < oo, (19)
T(R)=Ts(R), (20)
KpVT (R) = KsVTs (R), (21)
P'(R) =0, (22)
Ts(Rs) =0, (23)

where K and Kg are the thermal conductivities of the fluid and solid, respectively. The first two
conditions are necessary to guarantee that the solution is bounded, since the Hankel functions
have a singularity at zero. The third and fourth conditions ensure continuity of temperature and
heat flux across the fluid-solid interface. The fifth condition ensures that the normal derivative
of the pressure is zero at the fluid-solid interface. To a first approximation, this assumption is
reasonable when modeling the acoustic pressure in a trace gas sensor that employs a tuning
fork, since the amplitude of vibration of the tuning fork is several orders of magnitude smaller
than the characteristic lengths of the system. Therefore, it is reasonable to also assume that the
surface of the annular solid in our simplified model is rigid. The sixth condition states that the
temperature variation is zero on the outer wall of the annulus. This assumption is reasonable
since the temperature variation is known to decay exponentially in the solid, and because we
are most interested in computing the temperature near the inner wall of the annulus.

Imposing the condition 7' (R) = 0 in place of conditions (20), (21), and (23) yields essentially
the same solution in the fluid. However, in future work, we will develop a model for a trace gas
sensor in which the pressure and temperature in the fluid and the temperature in the tuning
fork are coupled to the mechanical deformation of the tuning fork. For this model, setting the
temperature to zero on the boundary of the tuning fork would be incorrect as laboratory data
has shown that at low ambient pressure the output of the sensor depends on both the pressure
variation at the interface and the temperature variation in the tuning fork near the interface.
One of our goals in this paper is to determine whether it is necessary to use the coupled system
given by Equations (13) and (14) to model the pressure and temperature in the fluid, or whether
it is sufficient to separately compute solutions of the acoustic wave and heat equations. Since
this question cannot be answered by imposing the condition 7' (R) = 0, we instead use the more
realistic conditions (20), (21), and (23).

3 Derivation of the Analytic Solution.

To solve Equations (13) and (14), we adapt the method used by Petra et al. [35] who employed
the acoustic wave equation to model the propagation of pressure waves in a QEPAS sensor.
By considering the Helmholtz form of the equation Petra and coauthors were able to use the
method of variation of parameters to derive an analytic solution to the acoustic wave equation
in terms of Bessel and Hankel functions. In this section, we use a similar approach to solve the
Morse-Ingard equations.

To facilitate the derivation of the solution and to focus attention on the parameters of
interest, we nondimensionalize the Morse-Ingard equations using the nondimensional quantities

x, =%, V.=2v, P=P(Z), T.=ar(Z),
C w w w
X l ly
S*:—95<cx>, =1 and A= (24)
w w C C
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Substituting these nondimensionalized quantities into Equations (13) and (14) gives

1
OV2T, +il, —il—~P, = §,, (25)
v

ViP, +v(1—iAV3) (P, —T,) = 0. (26)

To eliminate the spatial derivative of temperature in Equation (26), we substitute Equation
(25) into Equation (26) to obtain the new system,

OV2T +iT —il—~p =5, (27)

(1 —iyA) VP + [7 (1 — é) + g} P—y <1 — g) T = —m%S. (28)

Here we have dropped the star notation. However, the reader should keep in mind that we are
working with nondimensionalized quantities for the remainder of Section 3. Note that while the
equations are still coupled, each has derivatives of temperature or pressure only. Thus we can
write Equations (27) and (28) as

1 -1
0 <T” + T’) ir—il"-p=35, (29)
r Y

(1 —iyA) (P” + iP’) + [7 <1 - g) - g} P—x (1 - é) T = —W%S. (30)

3.1 Solution of the Homogeneous Equations.

We begin by finding the solution of the homogeneous version of the system (29) and (30). When
S =0, solving Equation (29) for P gives

p=—"_ [T —if2 <T” + 1T’>] . (31)
v—1 T
Because of the presence of the Laplacian in cylindrical coordinates in Equation (31), it is natural
to suppose that T' = Cy (kr), where Cy is a cylinder function of order zero, i.e., a linear combi-
nation of Bessel and Hankel functions of order zero [32], and k is a constant to be determined.
Consequently, T satisfies T" + %T’ = —k2T, and so Equation (31) can be rewritten as
Y

P =mT =mCy(kr) where m = 1 (1+ ika) . (32)
ry —

Since P is also a cylinder function, Equation (30) reduces to the algebraic equation

A A A
1 —iyA) (=k*P - |+=|P-v(1-%)T=0.
(i) (-0P) + |3 (1= 5) + 5] = (1- ) T =0 (53)
Since P = mT', and assuming 7" is not identically zero, we conclude that
(2 + QN E 4+ (1 —in2 —iA)k* —1=0. (34)

Therefore, for T' = Cy (kr) and P = mCp (kr) to be solutions of the homogeneous equations (29)
and (30), the parameter k£ must be a solution of Equation (34). Consequently,

2 z'<1—iw—micg>

Y0, 1—inA (35)

where
Q? = (1 — iy —iA)> +4(i2 4+ y0A) . (36)
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Next we define

2_L‘ 1—iy2 —id+Q Q_L‘ 1—iv2 —iAd—Q
Y ( 1—ivA and Ky =55 1—inA ’ (37)
and set ~ ~

We note that Equation (37) also holds for plane and spherical harmonic waves [6,29]. The
constants k, and k; correspond to acoustic and thermal modes, respectively [29]. The acoustic
mode has a small imaginary part and attenuates slowly whereas the thermal mode has both a

large real and large imaginary part and attenuates rapidly. Because Jy and H(()l) are a numerically
satisfactory pair of cylinder functions in the upper half of the complex plane [32, 10.2(iii)], we
use them to obtain the fundamental set of solutions to the homogeneous equations (29) and

(30):
[1ﬂ<r>} . [ Jo (kyr) ] Hy') (Jpr) [ Jo (kir) ] H (k) L g
P(r) mpJo (kpr) |7 mpHél) (kpr) " mudo (ker) | thél) (k)
3.2 Solution of the Inhomogeneous Equations.

Having found a fundamental set of solutions (39) to the homogeneous version of Equations (29)
and (30), we now solve the inhomogeneous equations (29) and (30). Introducing new variables
for 7" and P’, we can rewrite the two second order equations (29) and (30) as the first order
System

u'(r) = M(r)u(r) +g(r), (40)
where
77:/((7")) _Oi _11 i(ﬁn X 150(T)
u()=|poy | M@= ¢ o G 1 |s0=] 7 - ()
P'(r) I ARIEICS JAS S — it S (1)

Using the method of variation of parameters [4], the solution of the inhomogeneous system (40)
can be written as

u(r) = ¥ (r) (b + /0 "o (5)g (s) ds) , (42)

where b is a constant of integration and ¥ is the fundamental matrix

Jo (Fpr) Hg (kyr) Jo (k) HEY (k)
)= | el ) —kpHY (kyr) =kt (ker)  —keHY (k) (43)
mypJo (kpr) mpHél) (kpr) myJo (kyr) th((]l) (kyr)
—kympJy (kyr) —kympHY (kyr) —kymyy (kyr) —kemy HY (ker)
We use the Schur complement [26] to calculate ¥ 1. Specifically, we employ the blocking
AB
w:[CD] (14)
where
Jo (K 7Y (k Jo (K 7Y (k
— O( pr) 0 £ pr) , B = 0( tr) 0 1( tr) , (45)
—kpdy (k) —kpyHY (kyr) ke (k) =k HY (er)
and

C=mpA and D =mB. (46)
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Then

—1
1_|AB _ St -8~ 1BD !
= [c D] = [—D—lcs—l D14+ DS 1BD ! (47)
where
S=A-BD'C. (48)
Substituting D! = m%B_l and Equations (46) into Equation (48) yields
S="""" (49)
my
Therefore . ) .
1 meA —-A~
A e S 50)
where
A ) = T [ Rt ) —HG (k)| ety 2 T [k (k) —H (k)
2@ k Jl (k‘ ) J() (kp’l") ’ 2Z ktjl (k‘ﬂ“) JO (kﬂ')

To calculate A~! and B~! we used the property that W (Jo (2) ,H(()l) (z)) = 2i/ (rz) where W

denotes the Wronskian [32]. Thus the inverse of the fundamental matrix is given by

iy H{Y (k) —meHY (kyr) kyHL (kpr) SV (
g1 - mr kpmyJy (kpr) mydo (kpr)  —kpdi (kpr)  —Jo (kpr)

(r) =g 1) (1) (1) (1)

? (mt mp) k‘tmle (kitT) mpHO (k‘tT) _kt-Hl (ktr) _HO
—ktmle (ktT) —mpJo (ktT) ktjl (k;tr) JQ (k 7')
Applying the variation of parameters formula (42) we conclude that the general solution of
the first order system (40) is

u(r)=v(r)(b+c(r)). (52)

Here, b = [by, ba, bs, bs] " is a vector of unknown constants and ¢ (r) = [e (r), c2 (r) , ¢3 (r) , cq (r)]7
where

a0) = 5 (=) [ s (98 ) (53)
() = —m (E - %) [ 57098 (). (54)
3r) = g (m:T / SHY (kys) S (s) ds, (55)
ei (r) = m (E = #’) /0 sJo (kus) S (s) ds, (56)

and E = —iyA/ (2 (1 — iyA)). From the first and third rows of Equation (52), we conclude that
the general solution of the inhomogeneous system (29) and (30) is given by

T (r) = (b1 + c1 (1)) Jo (kpr) + (b2 + ¢2 (r)) HSY (kyr) +

(bs + 3 (r)) Jo (ker) + (bg + cq () HSY (k) (57)
P (r) = (b1 + e1 (1)) mydo (kypr) + (ba + ca (1)) myHSY (ki) +
(b3 +c3 (7’)) meJo (kﬂ') + (b4 +cy ( )) (ktr) (58)

To determine the constants by, by, b3, and by in Equations (57) and ( 8), as well as the constants
d; and dy in Equation (17), we use boundary conditions (18)—(23). To apply the first condition

(18), we consider }i_r}(l)T (r) in Equation (57). By using the approximation H(gl) (r) =~ (2i/7)In(r)
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[32], which is valid for small r, along with repeated application of L’'Hopital’s Rule, we conclude
that condition (18) gives

by + by = 0. (59)
Similarly, by considering lir% P (r), we conclude that condition (19) gives
T
bamy, + bymy = 0. (60)
Therefore, since m, # m;, Equations (59) and (60) imply
by = by = 0. (61)

Thus the coupled solution given in Equation (57) and (58) simplifies to

T (r) = (by + c1 (r)) Jo (kyr) + co (r) HY (kpr) +
(bs + 3 (r)) Jo (ker) + ¢4 (r) HSY (ker) | (62)

P (1) = (b1 + c1 (r)) myJo (kypr) + 2 (r) mp HG (k) +
(bs + c3 () meJo (ker) + cq (r) me HSY (Ryr) . (63)

Using Equations (62) and (63) and the four boundary conditions (20)—(23), we obtain the
linear system of four equations in four unknown constants b1, b3, di, and ds given by

JokR) (kB kR -H kR | e (R

ki (kpR)  key (eR) —%skgy (kR) —EskpmV (kR) | b3 | _ | Py (64)
mpkpJi (kpR) mikeJ1 (k¢ R) 0 0 dy Fy 7
0 0 Jo(kRs)  HS" (kRs) d2 0
where
Fi = —c1 (R) Jo (kpR) — ¢ (R) H" (kp R) — 3 (R) Jo (ki R) — ca (R) HY (k) (65)
Fy = —kyer (R) Jy (kpR) — kpea (R) HY (kyR ) kees (R) Ji (keR) — kyes (R) HY (keR) | (66)
F3 = —mpkper (R) J1 (kpR) — mpkyea (R) H ( R) —

mikics (R) Jy (keR) — mykyes (R) Hl( ) (kR) . (67)

Solving the third row for b3 and the fourth row for do and then substituting these expressions
into the two other rows we can reduce the system (64) to the 2 x 2 system

Jo (kR — Mk 1y R)Jo (ke R) Jo(kRs)H{" (kR) — Jo (kR PO
_my Kok ((Jolhre) O (kR) 1 Fy— 12
kpJi (kpR) (1 mt) Kp ( H (kRs) J1 (kR)> me

(68)

The 2 x 2 system (68) can now be solved for b; and d;, and using those values in the 4 x 4

system (64), we can find b3 and da. We now have a complete solution to the coupled temperature

and pressure system given by Equations (62) and (63). At this point, we remind the reader that

all quantities in these equations are nondimensional, but that they can be converted back to
physical units using Equation (24).
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4 Finite-Element Computation of the Solution.

As an additional check, we compared the analytical solution derived in the previous section
to a finite element solution computed on the two-dimensional domain shown in Figure 2. Our
finite element implementation, which was developed using the FEniCS package [24], is a first
step towards a computational model for QEPAS and ROTADE sensors in three dimensions
with realistic geometry. One of our major motivations for deriving the cylindrically symmetric
analytical solution is that it can be used to help verify the correctness of such a computational
model.

For the finite-element results in this paper, we solved the coupled Helmholtz system consist-
ing of the the Morse-Ingard equations (13) and (14) in a disk-shaped fluid domain, 244, and
the heat equation (15) in an annular solid domain, (2siq, with boundary and interfacial con-
ditions given by Equations (20)—(23). Since FEniCS does not support complex arithmetic, we
decomposed the variables into real and imaginary components, T' = T} + 15 and P = P; + 1P,
as in [5]. With this decomposition, the entries of the complex-valued finite-element matrices are
converted into 2 x 2 blocks of corresponding real-valued matrices. The mesh was generated using
the Gmsh package [14]. The mesh was refined around the source and near the interface between
the fluid and solid subdomains (see Figure 3). For our FEniCS implementation, we used linear
Lagrange interpolating polynomials on triangular elements. Finally, the assembled system was
solved using the sparse LU decomposition algorithm in the PETSc package [1]. The finite el-
ement system we solved had approximately 2 x 10° unknowns on a mesh with 10° triangular
elements. In Figure 3 we show a slightly coarser mesh (with 10* triangular elements) which has
the same characteristics as our simulation mesh. We note that with a finer mesh it is harder
to discern the refinement around the source and at the fluid-solid interface due to the density
of the elements. For comparison with the analytical solution, we used linear interpolation to

compute the values of the temperature and pressure along the z-axis of the two-dimensional
domain.
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Fig. 3 A finite-element mesh with 10% triangular elements for the domain shown in Figure 2.

5 Numerical Results.

In this section, we numerically investigate the solution of the Morse-Ingard equations derived in
Section 3. We first verify the correctness of the analytic solution for temperature and pressure
by comparison to a purely numerical solution computed via the finite element method. Next,
we show that the temperature solution from the Morse-Ingard equations differs significantly
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from the solution obtained using the heat equation in the fluid. In particular, we show that the
Morse-Ingard solution produces a thermal boundary layer which is not present in the solution
obtained using the heat equation in the fluid. This boundary layer results from the interaction
of a thermal part and an acoustic part of the solution of nearly equal magnitudes.

For all the numerical simulations, we assume that the fluid is nitrogen gas at a temperature
of 300 K and a pressure of 1 bar [36]. The parameter values we used are shown in Table 5.
All the parameter values in the simulations closely correspond to those used in our previous
modeling of laboratory experiments of QEPAS and ROTADE sensors [35,36]. In the first set
of numerical simulations, we assume that the width of the Gaussian source ¢ is 0.02 mm. In
Figure 4 we show the amplitude of the temperature variation in the fluid as a function of the
radial distance, 7, from the center of the laser beam over the interval [0,0.1] mm. The three
curves show the solution to the heat equation in the fluid (dots), the analytic solution of the
Morse-Ingard equations (circles), and the solution of the Morse-Ingard equations via the finite-
element method (dashes). The analytic solution of the Morse-Ingard equations agrees with the
finite-element solution, thus verifying the accuracy of both solution methods. Also, in Figure 4,
we see the amplitudes of the temperature variation given by the Morse-Ingard equations and
the heat equation in the fluid agree well for r € [0,0.025] mm. However, as r increases, the
two amplitudes diverge, as is seen more clearly in Figure 5, which shows the same solutions
as Figure 4 over the interval [0.05,0.1] mm rather than over the full interval [0,0.1] mm. The
solutions of the heat equation and the Morse-Ingard equations disagree in this region. For
example, at » = 0.08 mm, we see that the amplitude of the temperature given by the Morse-
Ingard equations (% 3.3x107° K) is about four times the amplitude of the temperature given

by the heat equation (% 7.7 %1076 K)

Source Frequency f =328 x10* Hz
Source Width c0=2x10"mor1x10%m
Radius of Nitrogen Gas Domain R=1x10"m
Outer Radius of Solid Annulus Rs=2x10""%m
Thermal Conductivity of Nitrogen Gas Kr=0.029 Wm T K!
Density of Nitrogen Gas po = 1.123 kg m~3
Specific Isobaric Heat Capacity of Nitrogen Gas C,=1041 J kg T KT
Ratio of Specific Heats of Nitrogen Gas y=14
Thermal Expansion of Nitrogen Gas B=333x103 K !
Bulk (Volume) Viscosity of Nitrogen Gas n=13x10°kgm s !
Viscosity of Nitrogen Gas p=176x10"7"kgm st
Speed of Sound in Nitrogen Gas c=353ms !
Thermal Conductivity of Solid Kg=16 Wm T K!
Thermal Diffusivity of Solid Dg=4x10"%m?s7 T
Effective Absorption Coeflicient Qe = 0.05 m™!
Laser Power W, =3x10"2W
Thermal Characteristic Length I, =6.276 x 10 % m
Viscous Characteristic Length I, =9.199 x 10 % m
— o =0 Z 33318 kgm ! K~ 572

Table 1 Parameters used in the numerical simulations.

In Figure 6 we plot the phase of the temperature variation relative to the source as a function
of r over the interval [0,0.1] mm. (We assume that the phase of the source is zero, see Equa-
tion (11).) Once again, we observe excellent agreement between the analytical and numerical
solutions of the Morse-Ingard equations. However, although the phase of the temperature solu-
tions of the Morse-Ingard equations and of the heat equation in the fluid agree well for small r,
they differ significantly as r increases.

The pressure solution of the Morse-Ingard equations is dominated by the acoustic mode,
which attenuates very slowly, and is therefore nearly constant over the interval [0,0.1] mm.
While we do not include plots of the amplitude or phase of the pressure variation in this paper,
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the analytic solution to the Morse-Ingard equations again agrees with the finite-element solution.
Both solutions have an amplitude of approximately 0.048 Pa, and they differ from one another
by less than one percent. Similarly, the phase of the pressure solution is nearly constant with

an approximate value of 1.59 radians.
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Fig. 4 Amplitude of temperature versus radial distance from the center of the laser beam. The width of the Gaussian
beam is ¢ = 0.02 mm. The figure shows the solution in the fluid only.
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Fig. 5 Amplitude of temperature versus radial distance from the center of the laser beam. The width of the Gaussian
beam is o = 0.02 mm. The figure is a zoomed-in view of the tail of Figure 4.

Having examined the solution in the fluid, we now consider the solution in a larger domain
which includes both the fluid and the solid annulus surrounding the fluid. In Figure 7 we plot the
amplitude of the temperature variation in the fluid as well as in the solid annulus surrounding
the fluid for r € [0,0.2] mm on a log scale for both the Morse-Ingard equations and the heat
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Fig. 6 Phase of temperature versus radial distance from the center of the laser beam. The width of the Gaussian beam is
o = 0.02 mm. The figure shows the solution in the fluid only.

equation in the fluid. The width of the laser source is still ¢ = 0.02 mm, and the fluid-structure
interface is located at r = 0.1 mm. At the interface, the temperature solution to the Morse-
Ingard equations is between one and two orders of magnitude larger than the solution obtained
using the heat equation in the fluid. Since the amplitude of vibration of the quartz tuning fork in
a ROTADE sensor is primarily determined by the temperature variation at the fluid-structure
interface [36], this result strongly indicates that the solution of the heat equation in the fluid
is likely to be a poor approximation when modeling thermal effects in trace gas sensors. In
particular, since the signal-to-noise ratio in a tuning fork sensor is approximately 1000, (i.e.,
30 dB) [11], ROTADE sensors can readily distinguish between temperature variations that are
less than an order of magnitude apart.

= — — Heat Equation
4r RN —— Morse-Ingard Equation 1

Log of amplitude of temperature variation (K)

12 ! ! N .
0.02 0.06 0.1 0.14 0.18

r (mm)

Fig. 7 Semilog plot of the amplitude of the temperature variation as a function of radial distance from the center of the
laser beam. The width of the Gaussian beam is o = 0.02 mm. The figure shows the solution in both the fluid, » € [0,0.1]
mm, and the surrounding solid, » € [0.1,0.2] mm.
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In the second set of numerical simulations, we assume a narrower width for the Gaussian
source, i.e., 0 = 0.001 mm. In Figure 8, we show the amplitude of the temperature variation
in the fluid as a function of the radial distance, r, from the center of the laser beam over the
interval [0,0.1] mm. The two curves show the solution obtained using the heat equation in the
fluid and the analytic solution of the Morse-Ingard equations. Because the source is narrower,
in this case, the solution decays much faster than in the previous case, as can be seen by
comparing Figures 4 and 8. In addition, we observe a boundary layer, as shown in Figure 9. This
figure shows the same solutions as Figure 8 but over the smaller interval [0.05,0.1] mm. While
the solution to the heat equation decreases monotonically, the solution to the Morse-Ingard
equation increases for r € [0.06,0.08] mm before decreasing for r € [0.08,0.1] mm. According
to Morse and Ingard, for a plane harmonic wave, the width of the temperature boundary layer
is \/2lpc/w =~ 0.0147 mm [29, p. 286]. In Figure 9, we see that for the cylindrical harmonic

wave, the width of the boundary layer is approximately 0.05 mm, which is on the same order
of magnitude as that predicted by Morse and Ingard.
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Fig. 8 Amplitude of the temperature variation as a function of radial distance from the center of the laser beam. The

width of the Gaussian beam is narrower than in Figures 4-7 with o = 0.001 mm. The figure shows the solution in the fluid
only.

In Figure 10, we show the phase of the temperature variation as a function of r over the
interval [0, 0.1] mm. Comparing Figures 6 and 10, we also see that there is a more rapid change
in phase of the temperature solution of the Morse-Ingard equations when the Gaussian beam is
narrower.

Both the thermal wave, T, and the pressure wave, P, contain a thermal part and an acoustic
part. The acoustic part of the temperature solution is given by the first two terms of Equa-
tion (62), i.e., (b1 +c1(r)) Jo (kpr) + c2(r) Hél) (kpr), and the thermal part of the temper-
ature solution is given by the last two terms of Equation (62), i.e., (b3 + c3(r)) Jo (k) +
cq (1) Hél) (kir). The acoustic and thermal parts of the pressure solution are given by the anal-
ogous terms of Equation (63). In Figure 11 we show the acoustic and thermal parts of the
temperature variation using the source with the narrower width of ¢ = 0.001 mm. For small
r, the thermal part of the solution is about two orders of magnitude larger than the acoustic
part. For example, at » = 0.02 mm, the amplitude of the thermal part of the temperature
solution (= 0.001 K) is about 24 times the amplitude of the acoustic part of the temperature
solution (% 4.17 x 107° K) As r increases, the acoustic part remains relatively constant while
the thermal part decreases. When both parts are roughly the same order of magnitude, they
produce the variation in amplitude in the radial direction seen in Figure 9. In Figure 12, we
show the acoustic and thermal parts of the pressure variation. The acoustic part of the solution
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Fig. 9 Amplitude of the temperature variation as a function of radial distance from the center of the laser beam. The
figure is a zoomed-in view of the tail of Figure 8. The width of the Gaussian beam is o = 0.001 mm.
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Fig. 10 Phase of the temperature variation as a function of radial distance from the center of the laser beam. The width
of the Gaussian beam is the same as in Figures 8 and 9 with ¢ = 0.001 mm. The figure shows the solution in the fluid only.

is at least two orders of magnitude larger than the thermal part of the solution. For example, at
r = 0.02 mm, the amplitude of the acoustic part of the pressure solution (= 0.0486 Pa) is about
5900 times the amplitude of the thermal part of the pressure solution (z 8.27 x 1076 Pa). As
r increases, the ratio of the amplitude of the acoustic part to the thermal part of the pres-
sure solution also increases. In summary, the thermal mode dominates the temperature solution
away from the boundary layer, while the acoustic mode dominates the pressure solution over
the entire fluid domain. For both the temperature and pressures solutions, the thermal mode
attenuates rapidly as described by Morse and Ingard [29, p. 282-283].
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Fig. 11 Amplitude of (a) the acoustic part and (b) the thermal part of temperature variation as a function of radial
distance from the center of the laser beam. The width of the Gaussian beam is ¢ = 0.001 mm. The figures show the
solution in the fluid only.
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Fig. 12 Amplitude of (a) the acoustic part and (b) the thermal part of pressure variation as a function of radial distance
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fluid only.

6 Conclusions.

We derived an analytic solution to the coupled system of pressure-temperature equations of
Morse and Ingard. By assuming that the laser source can be represented as a time-harmonic
function and by using the cylindrical symmetry of the domain, we converted the partial differ-
ential equations into ordinary differential equations for which the independent variable is given
by the radial distance from the center of the laser beam. We solved these ordinary differen-
tial equations using the method of variation of parameters. The constants of integration were
found by solving a system of linear equations obtained from the boundary conditions. We then
verified the correctness of the analytic solution by comparing it to the solution computed via
the finite-element method. We also compared the solution of the Morse-Ingard equations to the
solution of the heat equation in the fluid and found that the coupled nature of the Morse-Ingard
equations results in a significantly larger temperature variation than that predicted by the heat
equation, especially in the solid near the fluid-solid interface. This discrepancy demonstrates
the importance of using the Morse-Ingard equations for more realistic computational modeling
of trace gas sensors.

In addition, because the Morse-Ingard equations include parameters that model viscother-
mal effects, the analytic solution we derived in this paper provides a starting point for the
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development of a mathematical model of QEPAS and ROTADE sensors which accounts for
the damping of the tuning fork. The ultimate goal of such an improved model is to allow for
the efficient optimization of the tuning fork geometry via computer simulations so that the full
benefit of this promising technology may be realized.

An important application of the analytical solution we derived is that it can be used to verify
the correctness of computational models for trace gas sensors that are based on finite-element
solutions of the Morse-Ingard equations. In particular, because we correctly model the source,
we expect the behavior of the cylindrically symmetric pressure and temperature solutions to be
qualitatively similar to that in a trace gas sensor. By comparison, the plane wave solutions we
used in past verification studies are qualitatively very different [5].

To quantify the performance of a QEPAS/ROTADE sensor, the Morse-Ingard equations in
the fluid need to be coupled to the system of equations for the displacement of the tuning fork.
As we will show in future work, this coupling is via conditions on the interface between the fluid
and tuning fork. In particular, the condition on the tuning fork due to the fluid includes a term
that involves the viscous stress tensor of the fluid and models the damping of the tuning fork
due to its motion through the viscous fluid [16]. With the recent interest in further miniaturizing
these devices, the thermal and viscous boundary layers become more significant, emphasizing
the importance of our new model [15].

References

1. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp,
W., Kaushik, D.; Knepley, M., Mclnnes, L., Rupp, K., Smith, B., Zampini, S., Zhang, H.: PETSc Webpage.
http://www.mcs.anl.gov/petsc (2015)

2. Bell, A.: On the production and reproduction of sound by light. Am. J. Sci. 20, 305-324 (1880)

3. Bossart, R., Joly, N., Bruneau, M.: Hybrid numerical and analytical solutions for acoustic boundary problems in
thermo-viscous fluids. J. Sound Vib. 263, 69-84 (2003)

4. Boyce, W., DiPrima, R.: Elementary Differential Equations, 8th edn. John Wiley (2005)

5. Brennan, B., Kirby, R., Zweck, J., Minkoff, S.: High-performance python-based simulations of pressure and temperature
waves in a trace gas sensor. Proceedings of PyHPC 2013: Python for High Perfomance and Scientific Computing (2013)

6. Cao, Y., Diebold, G.J.: Effects of heat conduction and viscosity on photoacoustic waves from droplets. Optical Engi-
neering 36(2), 417-422 (1997)

7. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer-Verlag, New York, N.Y. (1979)

8. Cordioli, J., Martins, G., Mareze, P., Jordan, R.: A comparison of models for visco-thermal acoustic problems. In:
Inter-Noise. International Institute of Noise Control Engineering (2010)

9. Curl, R., Capasso, F., Gmachl, C., Kosterev, A., McManus, B., Lewicki, R., Pusharsky, M., Wysocki, G., Tittel, F.:
Quantum cascade lasers in chemical physics. Chemical Physics Letters 487, 1-18 (2010)

10. Dong, L., Kosterev, A., Thomazy, D., Tittel, F.: Compact portable QEPAS multi-gas sensor. Proc. of SPIE 7945,
79,450R:1 — 79,450R:7 (2011)

11. Dong, L., Kosterev, A.A., Thomazy, D., Tittel, F.K.: QEPAS spectrophones: design, optimization, and performance.
Appl. Phys. B 100, 627-635 (2010)

12. Firebaugh, S., Sampaolo, A., Patimisco, P., Spagnolo, V., Tittel, F.: Modeling the dependence of fork geometry on
the performance of quartz enhanced photoacoustic spectroscopic sensors. In: Conference on Lasers and Electro-Optics,
ATulJ3. San Jose, CA (2015)

13. Firebaugh, S., Terray, E., Dong, L.: Optimization of resonator radial dimensions for quartz enhanced photoacoustic
spectroscopy systems. In: Proc. SPIE 8600, Laser Resonators, Microresonators, and Beam Control XV, 86001S (2013)

14. Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-
processing facilities. International Journal for Numerical Methods in Engineering 79(11), 1309-1331 (2009)

15. Gliere, A., Rouxel, J., Parvitte, B., Boutami, S., Zeninari, V.: A coupled model for the simulation of miniaturized and
integrated photoacoustic gas detector. International Journal of Thermophysics 34, 2119-2135 (2013)

16. Joly, N., Bruneau, M., Bossart, R.: Coupled equations for particle velocity and temperature variation as the fundamental
formulation of linear acoustics in thermo-viscous fluids at rest. Acta Acustica united with Acustica 92, 202-209 (2006)

17. Kampinga, R.: Viscothermal acoustics using finite elements: Analysis tools for engineers. Ph.D. thesis, University of
Twente, Enschede, The Netherlands (2010)

18. Kokubun, K., Hirata, M., Murakami, H., Toda, Y., Ono, M.: A bending and stretching mode crystal oscillator as a
friction vacuum gauge. Vacuum 34, 731-735 (1984)

19. Kosterev, A., Bakhirkin, Y., Curl, R., Tittel, F.: Quartz-enhanced photoacoustic spectroscopy. Optics Letters 27,
1902-1904 (2002)

20. Kosterev, A., Doty III, J.: Resonant optothermoacoustic detection: technique for measuring weak optical absorption
by gases and micro-objects. Optics Letters 35(21), 3571 — 3573 (2010)

21. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Addison-Wesley Publishing Company, Reading, MA (1959)

22. Lavergne, T., Joly, N., Durand, S.: Acoustic thermal boundary condition on thin bodies: Application to membranes
and fibres. Acta Acustica united with Acustica 99, 524-536 (2013)

23. Lewicki, R., Jahjah, M., Ma, Y., Stefanski, P., Tarka, J., Razeghi, M., Tittel, F.: Current Status of Mid-Infrared
Semiconductor Laser Based Sensor Technologies for Trace Gas Sensing Applications, chap. 23. SPIE Press (2013). In: M.
Razeghi, L. Esaki and K. von Klitzing (Eds.), “The Wonder of Nanotechnology: Present and Future of Optoelectronics
Quantum devices and their applications for Environment, Health, Security, and Energy”

24. Logg, A., Mardal, K., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method. Springer
(2012)



Solution to Coupled Pressure-Temperature Equations 21

25.

26.
27.

28.

33.

34.

35.

36.

37.

38.

39.

Ma, Y., Lewicki, R., Razeghi, M., Tittel, F.: QEPAS based ppb-level detection of CO and N20O using a high power
CW DFB-QCL. Opt. Express 21(1), 1008-1019 (2013). DOI 10.1364/OE.21.001008

Meyer, C.: Matrix Analysis and Applied Linear Algebra. SIAM (2000)

Miklos, A., Bozoki, Z., Jiang, Y., Feher, M.: Experimental and theoretical investigation of photoacoustic-signal gener-
ation by wavelength-modulated diode lasers. Appl. Phys. B 58, 483-492 (1994)

Miklés, A., Schéfer, S., Hess, P.: Photoacoustic Spectroscopy, Theory. In: J. Lindon, G. Tranter, J. Holmes (eds.)
Encyclopedia of Spectroscopy and Spectrometry, pp. 1815-1822. Academic Press, London UK (1999)

. Morse, P., Ingard, K.: Theoretical Acoustics. Princeton University Press, New Jersey (1986)

. Newell, W.: Miniaturization of tuning forks. Science (New Series) 161(3848), 1320 — 1326 (1968)

. Nye, J.: Physical Properties of Crystals. Oxford University Press, New York (2000)

. Olver, F., Maximon, L.: Digital Library of Mathematical Functions: Chapter 10 Bessel Functions (2014).

http://www.dlmf.nist.gov/10

Patimisco, P., Scamarcio, G., Tittel, F., Spagnolo, V.: Quartz-enhanced photoacoustic spectroscopy: A review. Sensors:
Special Issue “Gas Sensors-2013” 14, 6165-6206 (2014)

Petra, N., Kosterev, A., Zweck, J., Minkoff, S., Doty III, J.: Numerical and experimental investigation for a resonant
optothermoacoustic sensor. In: Conference on Lasers and Electro-Optics, CMJ6. San Jose, CA (2010)

Petra, N., Zweck, J., Kosterev, A., Minkoff, S., Thomazy, D.: Theoretical analysis of a quartz-enhanced photoacoustic
spectroscopy sensor. Appl Phys B 94, 673-680 (2009)

Petra, N., Zweck, J., Minkoff, S., Kosterev, A., Doty III, J.: Modeling and design optimization of a resonant optother-
moacoustic trace gas sensor. SIAM Journal on Applied Mathematics pp. 309-332 (2011)

Petra, N., Zweck, J., Minkoff, S., Kosterev, A., Doty III, J.: Validation of a model of a resonant optothermoacoustic
trace gas sensor. In: Conference on Lasers and Electro-Optics, JTull15. Baltimore, MD (2011)

Tittel, F., Lewicki, R., Jahjah, M., Foxworth, B., Ma, Y., Dong, L., Griffin, R., Krzempek, K., Stefanski, P., Tarka, J.:
Mid-Infrared Laser based Gas Sensor Technologies for Environmental Monitoring, Medical Diagnostics, Industrial and
Security Applications, chap. 21. Springer Science+Business Media, Dordrecht (2014). In: M.F. Pereira and O. Shulika
(Eds.), “Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz)”

Zheng, H., Dong, L., Yin, X., Liu, X., Wu, H., Zhang, L., Ma, W., Yin, W., Jia, S.: Ppb-level QEPAS NOg sensor by
use of electrical modulation cancellation method with a high power blue LED. Sensors and Actuators B: Chemical
208, 173-179 (2015)



