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THE ESSENTIAL SPECTRUM OF PERIODICALLY STATIONARY
PULSES IN LUMPED MODELS OF SHORT-PULSE FIBER LASERS*

VRUSHALY SHINGLOT' AND JOHN ZWECKT

Abstract. In modern short pulse fiber lasers there is significant pulse breathing over each round
trip of the laser loop. Consequently, averaged models cannot be used for quantitative modeling
and design. Instead, lumped models, which are obtained by concatenating models for the various
components of the laser, are required. Since the pulses in lumped models are periodic rather than
stationary, their linear stability is evaluated with the aid of the monodromy operator obtained by
linearizing the round trip operator about the periodic pulse. Conditions are given on the smoothness
and decay of the periodic pulse which ensure that the monodromy operator exists on an appropriate
Lebesgue function space. A formula for the essential spectrum of the monodromy operator is given
which can be used to quantify the growth rate of continuous wave perturbations. This formula is
established by showing that the essential spectrum of the monodromy operator equals that of an
associated asymptotic operator. Since the asymptotic monodromy operator acts as a multiplication
operator in the Fourier domain, it is possible to derive a formula for its spectrum. Although the
main results are stated for a particular experimental stretched pulse laser, the analysis shows that
they can be readily adapted to a wide range of lumped laser models.

Key words. essential spectrum, evolution semigroups, fiber lasers, monodromy operator, non-
linear optics

AMS subject classifications. 35B10, 35Q56, 37L15, 47D06, 7T8A60

1. Introduction. The purpose of this paper is to establish a formula for the
essential spectrum of the monodromy operator for a periodic pulse in a lumped model
of an experimental short pulse fiber laser. The physical importance of the essential
spectrum is that it quantifies the growth rate of continuous wave perturbations seeded
by quantum mechanical noise in the system. Such perturbations can have a major
impact on the performance of laser-based systems. Since the advent of the soliton
laser [26], researchers have invented several generations of short pulse fiber lasers for a
variety of applications, including stretched-pulse (dispersion-managed) lasers [22, 32],
similariton lasers [7, 11], and the Mamyshev oscillator [28, 31, 33]. The pulses in
these lasers typically have durations on the order of 100 fs, peak powers on the order
of 1-2 MW, and energy in the 1-50 nJ range. Applications of femtosecond laser
technology include frequency comb generation, highly accurate measurement of time,
frequency, and distance, optical waveform generation, trace-gas sensing, the search
for exoplanets, and laser surgery [3, 8].

Traditionally, mathematical modeling and analysis of short pulse lasers has been
based on averaged models, in which each of the physical effects that act on the light
pulse is averaged over one round trip of the laser loop to obtain a partial differential
equation such as the cubic-quintic complex Ginzburg-Landau equation (CQ-CGLE)
or the Haus master equation (see [23] for a review). This approach has been success-
fully applied to soliton lasers for which the pulse maintains its shape as it propagates
over each round trip. In particular, analytical and computational methods have been
developed to find stationary pulse solutions of these equations and to analyze their
stability using soliton perturbation theory [12, 13, 15, 21, 25]. However, as is high-
lighted in the survey paper of Turitsyn et al. [35], averaged models cannot be used
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2 V. SHINGLOT AND J. ZWECK

for the quantitative modeling and design of modern short pulse lasers since from one
generation of laser to the next there has been a dramatic increase in the amount by
which the pulse varies over each round trip.

Instead, the computational modeling of modern short pulse lasers should be based
on lumped models obtained by concatenating models for the various components of the
laser. Typically short pulse lasers include an optical fiber amplifier, segments of single-
mode fiber, a saturable absorber, a dispersion compensating element, a spectral filter,
and an output coupler. Different laser designs are characterized by different orderings
of the components around the loop and by different sets of physical parameters for
each component. Depending on the modeling goal, the models of the individual
components may be phenomenological or derived from physical laws. With a lumped
model, the pulse changes shape as it propagates through the various components of
the laser system, returning to the same shape once per round trip. We call such pulses
periodically stationary to distinguish them from the stationary pulses in a soliton laser.

The key goals for the modeling of short pulse lasers are to find parameter regions
in which stationary or periodically stationary solutions exist, determine the stability
of these pulses, and within the stability region to optimize the pulse parameters and
noise performance for specific applications.

Building on analytical work of Kaup [21] and Haus [12, 13], Menyuk [25] de-
veloped a computational approach to the modeling of stationary pulse solutions of
averaged models. With this method, stationary pulses are found using a root finding
method and their linear stability is determined by computing the spectrum of the
linearization of the governing equation about the pulse. (We recall that the spectrum
of an operator on a function space is the union of the essential spectrum and the
eigenvalues). In this context the essential spectrum is elementary to calculate with
the aid of Weyl’s essential spectrum theorem [17]. While Menyuk computes the ei-
genvalues by solving a nonlinear eigenproblem involving a matrix discretization of the
differential operator [29, 36], analytical and computational Evans function methods
have also been developed for the CQ-CGLE and for nonlocal equations such as the
Haus master equation [16, 18, 19].

Extending this approach to periodically stationary pulses in lumped laser mod-
els is significantly more challenging. In [30], building on a method of Ambrose and
Wilkening for computing periodic solutions of partial differential equations [2], we de-
veloped an optimization method to find periodically stationary pulses. Each iteration
of the optimization algorithm involves solving the equations in the model over one
round trip of the laser. In analogy with the Floquet theory of periodic solutions of
ordinary differential equations [34], we expect that the linear stability of the resulting
periodic pulse will be determined by the spectrum of the monodromy operator of
the linearization of the lumped model about the pulse. Indeed, it should be possible
to rigorously establish such a result by generalizing the Floquet stability theory for
parabolic partial differential equations developed by Lunardi [24]. In [30] we also
presented a formula for the essential spectrum of the monodromy operator and ob-
tained excellent agreement between the formula and a subset of the eigenvalues of a
matrix discretization of the operator. This agreement was shown for a lumped model
of an experimental stretched pulse laser of Kim et al [22]. The purpose of the current
paper is to prove the essential spectrum formula announced in [30]. Our approach
builds upon that in Zweck et al. [39] which dealt with the simpler case of periodically
stationary pulse solutions of the constant-coefficient CQ-CGLE.

Since we do not yet know how to formulate conditions to ensure that there exists
a periodically stationary pulse solution to the lumped model, for the results in this pa-
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ESSENTIAL SPECTRUM IN A SHORT PULSE LASER 3

per we simply assume that the parameters in the model have been chosen so that such
a pulse exists. This assumption is reasonable since we have solid numerical evidence
for the existence of such pulses [30]. The first main result of the paper, Theorem 4.4,
provides conditions on the regularity and decay of the pulse which guarantee that
the monodromy operator exists on an appropriate L?-function space. Since it is not
possible to calculate the essential spectrum of the monodromy operator directly, we
instead compute the essential spectrum of an associated asymptotic monodromy op-
erator. The asymptotic operator is defined by taking the limit as the spatial variable
goes to infinity of the monodromy operator. Intuitively, the spectrum of the asymp-
totic operator provides information about the growth rate of noise perturbations far
from the pulse. The second main result, Theorem 4.6, is a formula for the essential
spectrum of the asymptotic monodromy operator. This result is established in the
Fourier domain, where the asymptotic operator acts as a multiplication operator on a
space of C?-valued functions. The proof relies on a general formula we derive for the
spectrum of a multiplication operator on L?(R,C?). The proof of this general formula
builds on a similar well known formula in the case of scalar-valued functions [5], but
the case of vector-valued functions involves some additional technicalities. Finally, in
the third main result, Theorem 4.7, we establish conditions which guarantee that the
essential spectrum of the monodromy operator equals that of the asymptotic operator.

To keep the presentation as concrete as possible, rather than attempting to for-
mulate an abstract definition of a general lumped model of a short pulse laser, the
theorems are formulated and proved for the Kim laser we modeled in [30]. However,
based on the discussion at the beginning of this introduction, we anticipate that the
results can easily be adapted to most lumped laser models. In particular, the formula
we derive for the essential spectrum is independent of the order of the components
in the model. Furthermore, provided that the conditions in the remark following
Theorem 4.7 still hold, the models for the components can be switched out for other
models, and additional components such as a spectral filter can be added. Finally, the
conditions on the physical parameters we impose in the main results hold generically.

From a technical point of view there are two main challenges in extending the
results on the constant coefficient CQ-CGLE in [39] to lumped laser models. The
first challenge is that nonlocality of the gain saturation in the Haus master equation
complicates the proofs of the main theorems. The physical implications of the nonlo-
cality of the gain saturation are discussed in Section 5. The second challenge is that
the monodromy operator is defined as a composition of solution operators for each
component of the model, which requires adopting a different point of view, especially
in the proof of the third main result. The combination of these two challenges ulti-
mately means that the formula for the essential spectrum in the lumped model has a
different character from the CQ-CGLE case.

The paper can be outlined as follows. In Section 2, we describe the lumped model
of the experimental stretched pulse laser of Kim et al. [22] and define the round trip
operator, R. In Section 3, we linearize R about a periodically stationary pulse, 1,
to obtain the monodromy operator, M, and the associated asymptotic monodromy
operator, M. In Section 4, we state the three main theorems of the paper, including
formulating the hypotheses on 1 we need to obtain these results. We also state the
formula we derived for the essential spectrum of M. In Section 5 we present some
simulation results based on this formula. In Section 6, we prove the first main theorem
on the existence and regularity properties of M. This proof relies on the concept of an
evolution system in semigroup theory [27] in which linear partial differential equations
of the form d;u = L(t)u are regarded as ordinary differential equations for trajectories,

This manuscript is for review purposes only.



166
167
168
169
170
171

4 V. SHINGLOT AND J. ZWECK

t — u(¢), in an infinite dimensional Banach space. The estimates in the proof of the
technical Lemma 6.7 are relegated to Appendix A. In Section 7, we derive a formula
for the spectrum of a general multiplication operator on L?(R,C?), and in Section 8
we apply this formula to calculate the essential spectrum of M,. In Sections 9 and
10, we prove two theorems concerning the linearized differential operator, £(¢), in the
fiber amplifier and its asymptotic counterpart, L. (t). The first result states that
L(t) is a relatively compact perturbation of L (t) and the second result states that
the semigroup of the operator L. (t) is analytic. Finally, these results are used in
Section 11 to prove the third main theorem that the essential spectrum of M equals
the essential spectrum of M.

2. Mathematical Model. In the left panel of Fiigure 1, we show a system
diagram for the lumped model of the stretched pulse laser of Kim et al. [22]. A
light pulse circulates around the loop, passing through a saturable absorber (SA),
a segment of single mode fiber (SMF1), a fiber amplifier (FA), a second segment of
single mode fiber (SMF2), a dispersion compensation element (DCF), and an output
coupler (OC). After several round trips, the light circulating in the loop forms into a
pulse that changes shape as it propagates through the different components, returning
to the same shape each time it returns to the same position in the loop. In the right
panel of Figure 1 we show the profile of such a periodically stationary pulse at the
output of each component. The goal of this paper is to study the spectral stability of
periodically stationary pulses in lumped models of fiber lasers.

50%

CSAD
SMF1 1000
: E
~_ 500
=
FA
DCF 0-
9
10
1
SMF2 x [ps]

F1G. 1. Left: System diagram of the stretched pulse laser of Kim et al. [22]. Right: Instanta-
neous power of the periodically stationary pulse exiting each component of the laser.

At each position in the loop, we model the complex electric field envelope of the
light as a function, ¥ = t(z), of a spatial variable, z, across the pulse. The pulse is
normalized so that |¢)(z)|? is the instantaneous power. We assume that the function,
¥, is an element of the Lebesgue space, L?(R,C), of square integrable, complex-
valued functions on R. We model each component of the laser as a transfer function,
P: L*R,C) — L*(R,C), so that

(21) 77[}0ut = Pd)ina

where ¥, and .. are the pulses entering and exiting the component. The com-
ponents in the model come in two flavors: discrete and continuous. By a discrete
component we mean one in which the action of the operator, P, on the input pulse,
Yin, is essentially obtained in one step, for example by the application of an explicit
formula. In our model of the Kim laser, the discrete components are the saturable
absorber, dispersion compensation element, and output coupler. Short-pulse fiber
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ESSENTIAL SPECTRUM IN A SHORT PULSE LASER 5

lasers sometimes also include a spectral filter that is modeled as a discrete compo-
nent. By a continuous component, we mean one in which the action of the operator,
‘P, on the input pulse, 1i,, is modeled by solving a nonlinear wave equation with
initial condition, ¥j,, from the input to the output of the component. In fiber lasers
the continuous components are those that involve the propagation of a light pulse
through a segment of nonlinear optical fiber. For our model of the Kim laser these
are the fiber amplifier and the two segments of single mode fiber. Note that we have
chosen to model the dispersion compensation element as a discrete component, since
it is modeled by a constant-coefficient linear partial differential equation which has
an analytical solution in the Fourier domain.

With a lumped model, the propagation of a light pulse once around the laser loop
is modeled by the round trip operator, R : L?(R,C) — L?(R,C), which is given by
the composition of the transfer functions of all the components. For our model of the
Kim laser, the round trip operator is given by

(22) R = POC o PDCF ° PSMFZ o PFA o PSMF] o PSA-
We say that 1g € L?(R,C) is a periodically stationary pulse if
(2.3) R(tho) = €1,

for some constant phase, § € [0,27). For the Kim laser, 1)y is the pulse at the
input to the saturable absorber. For each component, we let ¢y, denote the pulse
obtained by propagating the periodically stationary pulse, ¥, from the input to the
SA to the input to that component. For the continuous fiber components we let 1
denote the pulse propagating through that fiber. In [30], we formulated the problem
of discovering periodically stationary pulses as that of finding a zero of the Poincaré
map functional, £ : L%(R,C) x [0,27) — R, given by

1 .
(2.4) E(to,0) = 5 [R(vo) - ewwouiz(R,C) :

Since £ > 0, in practice we minimize £ with respect to 1y and 6 using a gradient-
based iterative optimization method. In the right panel of Figure 1, we plot the
optical power of a periodically stationary pulse obtained using this method.

We now describe the model for the propagation of a light pulse, ¥ = (¢, ),
through the fiber amplifier. Here ¢ denotes position along the fiber, with 0 < ¢ < Lya,
where Lga is the length of the fiber amplifier. We note that ¢ is a local evolution
variable that is only defined within the fiber amplifier. Mathematically, we regard
x as the spatial variable across the pulse. Physically speaking, it is a fast time
variable defined relative to a frame moving at the group velocity [38]. Our model for
propagation in the fiber amplifier is based on the Haus master equation [12], which is a
generalization of the nonlinear Schrédinger equation that includes gain that saturates
at high energy and is of finite bandwidth. Specifically, we model the transfer function,
PFA of a fiber amplifier of length, Lpa, as tous = PFin, where You, = ¥(Lpa, ) is
obtained by solving the initial value problem

9(¥) I o i 2 - 2
¢(0, ) = win-
Here, g(v) is the saturable gain given by
(2.6) 9(v) -

- 1 + E(w)/Esat7
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6 V. SHINGLOT AND J. ZWECK

where g is the unsaturated gain, Eq,; is the saturation energy, and E(v) is the pulse
energy, which is given by

(2.7) B) = [ ot.a)Pde

We note that the energy, and hence the saturable gain, are nonlocal in the spatial
variable, z, and that they depend on the evolution variable, ¢, since 1) does. The
finite bandwidth of the amplifier is modeled using a Gaussian filter with bandwidth,
Q. In (2.5), Bra is the chromatic dispersion coefficient and +y is the nonlinear Kerr
coefficient.

Similarly, we model the transfer function, , of a segment of single mode fiber
of length, Leyr, as ot = PSMF4y,, where 1oy = ¥(Lsmr, -) is obtained by solving
the initial value problem for the nonlinear Schrédinger equation given by

O = _%ﬁSMFaiw + iy[Y e, for 0 <t < Lsmr,
UJ(Oa ) = ’l/}in'

PSMF

(2.8)

We model the dispersion compensation element as Ppcp = F ' o PDCF o F , where F
is the Fourier transform and

(2.9) Dout (w) = (PP ) (w) = exp (iw?Bpor/2) Gin(w),

with ¢ = F (v)). We observe that (2.9) is the solution to the initial value problem for
the linear equation obtained by setting v = 0, Ssmr = Bpcr and Lgyr = 1 in (2.8).

We model the saturable absorber using the fast saturable loss transfer func-
tion [37], PS4, given by

Lo
2.10 =P (i) = (1 - ) ins
( ) ¢out (/l/) ) 1 + ‘win|2/Psat 7/)
where £; is the unsaturated loss and Pi,¢ is the saturation power. With this model,
Yous at x only depends on v, at the same value of x. Finally, we model the transfer
function, P°C, of the output coupler as

(2'11) '(/Jout = 7DOC'(/)im = KOC %m
where (£oc)? is the power loss at the output coupler.

3. Linearization of the Round Trip Operator. In this section, we derive
the linearizations, U, about a pulse of each of the operators, P, defined in Section 2.
By the chain rule, the linearization, M, of the round trip operator, R, about a
periodically stationary pulse, g, is equal to the composition of the linearized transfer
functions, U, i.e.,

(31) M = uOC OZ/[DCF o uSMFQ OZ/[FA o uSMFl o uSA.

In analogy with the monodromy matrix in the Floquet theory of periodic solutions of
ODE’s [34], we call M the monodromy operator of the linearization of the round trip
operator, R, about the periodically stationary pulse, .

Because the linearization of the partial differential equations in the model involves
the complex conjugate of v, we reformulate the model as a system of equations for
the column vector 9 = [Re(v),Im(¥)]T € R? For example, the transfer function
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ESSENTIAL SPECTRUM IN A SHORT PULSE LASER 7

of the fiber amplifier is reformulated as the operator, PFA : L2(R,R?) — L?*(R,R?),
given by 1., = P™1;,, where ¥, = ¥(Lga,-) is obtained by solving the initial
value problem

o = |42 (1+ 02) - 5302+ |1 I° 9] ¥,
'(/)(O, ) =i,

(3.2)

where J = [(1) _01] , and ||-|| is the standard Euclidean norm on R2.

The linearized transfer function, ¥ : L?(R,R?) — L?(R,R?), in the fiber am-
plifier is given by wew = U ui,, where uoy, = u(Lpa, -) is obtained by solving the
linearized initial value problem

Ou=[g(¢¥)K+ L+ M () + Me(¥)]u+P(pp,u),  for0<t< Lpy

(33) U(O, ) = Uin,
where
_ _ B
- K=1 (1 n Qigai) : L=-2302
M () =7 %] 3, My () = 29Jepap”
and
(3.5) Pvou) =~ £ [(1+ 52) o] [ 9 @ut@as

is a nonlocal operator. The non-locality of P, which arises because the gain saturation
depends on the total energy of the pulse, makes the analysis more challenging for
the fiber amplifier than for a segment of single mode fiber. The linearized transfer
function, USMF | of a segment of single mode fiber is obtained by setting g(¢/) = 0 in
(3.3) and (3.5).

The linearized transfer function, 454, for the saturable absorber is given by

2 .
(36) Uout = uSA(Qpin)uin = <1 - e(,l/)m) - %W%n@b?;) Uin,
04 sat
where
Lo

1+ ||¢inH2 /Psat.

The remaining components, i.e. dispersion compensation fiber and output coupler,

already have linear transfer functions, and so YPCF = PPCF and yO€ = pOC.
Because eigenvalues and eigenfunctions can be complex valued, we extend the

linearized system to act on complex-valued functions, u € L?(R, C?), where

(3.8) L*R,CH ={u=v+iw : v,w < L*(R,R?)},

is the space of C2-valued functions on R with the standard Hermitian inner product.
Let 7 be an operator that acts on R2-valued functions. We extend 7 to act on
C?-valued functions by defining Tu = Tu; + iTuy. where u = wu; + iuy with
uy,uz € L*(R,R?). Note that the formulae above for the action of the differential
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8 V. SHINGLOT AND J. ZWECK

operators and transfer functions on C2?-valued functions, u, are the same as for their
action on R2-valued functions, since in both cases we only require 1 to be R2-valued.
The only difference is our interpretation of the function spaces on which they act.

The linear stability of the pulse 1 is determined by the spectrum of the mon-
odromy operator, M, which is the union of the essential spectrum of M and the ei-
genvalues of M. In Section 4, we show that the essential spectrum of the monodromy
operator is equal to the essential spectrum of an associated asymptotic monodromy
operator, Mo, which is defined by

(39) Moo _ uo?)C o UODOCF o ufoMFQ ° ufoA o UOSOMFI OZ/{EOA»

where each operator, U, is the z-independent operator obtained by taking the limit
as |z| — oo of the corresponding operator, Y. In Section 4, we will impose conditions
on the pulse that ensure that these limits exist. Under these conditions, each operator
U, can be obtained by setting ¥» = 0 in the corresponding formula for ¢/. We refer
to the operators, U, as asymptotic linearized transfer functions.

4. Main Results. In this section, we first state a theorem that establishes the
existence, uniqueness, and regularity properties of the monodromy operator, M, given
by (3.1). Essentially the same result also holds for the asymptotic monodromy op-
erator, My, given by (3.9). Then we provide an explicit formula for the essential
spectrum of M. The last major result is a theorem stating that essential spectrum
of M equals that of M.

Rigorously proving the existence, uniqueness, and regularity of periodically sta-
tionary pulse solutions, 1, of the lumped model is challenging. Instead, for the results
in this paper, we assume that a periodically stationary pulse, 1, exists. This assump-
tion is reasonable since we have strong numerical evidence for the existence of such
pulses [30]. We do however need to impose some regularity and decay hypothesis on
1) to guarantee the existence of a monodromy operator for ) and to prove the results
about the essential spectrum. These can be stated as follows.

Hypothesis 4.1. The pulse, ti,, about which the transfer function, (2.10), of the
saturable absorber is linearized has the property that vi,, 9%, and 8%y, are
bounded and continuous on R, and )y, decays exponentially to zero as x — foo.

Hypothesis 4.2. The pulse, 1, about which equation (2.8) for each single mode
fiber of length, Lgmr, is linearized has the following properties:

(a) v, Opb are continuous in ¢, uniformly in x;

(b) For each ¢, the function ¢ (t,-) € L>®(R, C);

(c) For each ¢, the weak derivative 0,9 (t,-) € L>(R,C);

(d) There exist constant > 0 so that

(4.1) lim e y(t,2)[ =0, for all t € [0, Lsur].
Hypothesis 4.3. In the fiber amplifier of length, Lga, the pulse, ¥, about which
(2.5) is linearized has the same properties as in Hypothesis 4.2, in addition to which
(a) For almost all z € R, ¢ is C? in t;
(b) For almost all x € R, 0%, 0,(0,v), 0;(021)) are continuous in t;
(c) There exists h € L2(R,R) N L>=(R,R) so that

(4.2) oM Oyt x)| < h(z) for k=0,1, £=0,1,2,
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ESSENTIAL SPECTRUM IN A SHORT PULSE LASER 9

and
(4.3) 026 (t,)| < h(a),

for all ¢t € [0, Lpa] and almost all z € R.

REMARK. Property (c¢) of Hypothesis 4.3 holds if all the functions af’“)agﬁe)@b are
bounded and decay exponentially as in property (d) of Hypothesis /.2.

Let B(X) denote the space of bounded linear operators on a Banach space, X.
Then we have the following theorem on the existence, unqgiueness, and regularity of
the monodromy operator.

THEOREM 4.4. Let v, be a periodically stationary solution of the lumped laser
model, i.e., a solution of (2.2). Under Hypotheses 4.1, /.2, and 4.3, the monodromy
operator, M, in (3.1), which is the linearization of the round trip operator, R, about
Y, has the following properties:

(a) M € B(L*(R,C?));

(b) M(H?*(R,C?)) C H?(R,C?);

(¢c) For each v € H?(R,C?), u = M(v) is the unique solution after one round

trip of the linearization of R about 1.

REMARK. An analgous result holds for the asymptotic monodromy operator, My,
given by (3.9).

Next, we recall the definition of the essential spectrum used in the results below.

DEFINITION 4.5. Let A : D(A) C X — X be a linear operator with domain,
D(A), on a Banach space, X. We suppose that A is closed and densely defined. The
resolvent set of A is

(4.4) p(A) ={\ € C : A— ) is invertible and (A —\)"" € B(X)},

and for each X € p(A), the resolvent operator is R(\ : A) = (A—A)~!. The spectrum
of A is 0(A) = C\p(A). The point spectrum of A is

(4.5) opt(A) ={A € C : Ker(A—\) # {0}}.
The Fredholm point spectrum of A is the subset of opi(A) defined by
(4.6) Ulﬁ(A) ={AeC : A—\ is Fredholm, Ind(A—)\) =0 and Ker(A—X) # {0}},

and the essential spectrum of A is Oess(A) = 0(A)\o7; (A).
REMARK. Although o(A) = opi(A) U gess(A), this union may not be disjoint.

REMARK. There are several inequivalent definitions of the essential spectrum of a
closed and densely defined operator. Here, we use the same definition of the essential
spectrum as in Zweck et al. [39]. This definition is chosen so that o.ss(A) is the
largest subset of the spectrum of A that is invariant under compact perturbations [4].

Next, we state a formula for the essential spectrum of M,. This formula involves
the total dispersion in one round trip of the laser system, which for the stretched pulse

laser is given by Brr = BsmriLsmr1 + BraLra +BsmreLismr2 +Bpcr. Here Bra, Bsmr,
and fpcr, are the dispersion parameters given in (2.5), (2.8), and (2.9), respectively.
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THEOREM 4.6. Suppose that the hypotheses of Theorem 4.4 hold, and that £y # 1
and either (i) Brr # 0 or (i1) Q, < co and fOLFA g(¥(t))dt # 0. Then the essential
spectrum of the asymptotic monodromy operator, Mo, in (3.9) is given by

(4.7) Cess(Moo) = 0(Mu) = { Aa(w) € C | w € R} U{0},

where
(4.8)  As(w) =Loc(1l — o) exp {; <1 - ;;;}) /OLFA g(w(t))dt} exp {j:iwjﬁRT} .

REMARK. Fquation (4.8) can be readily adapted to other lumped fiber laser mod-
els, provided that formulae can be found for the Fourier transforms of all the asymp-
totic linearized transfer functions, Uy, in the model. In particular, the formula is
independent of the order in which the components are arranged around the loop.

To prove that the essential spectrum of M equals that of M., we require that
the linearization of the equation modeling the single mode fiber segments (SMF1
and SMF2) generates an analytic semigroup. To do so, we add an additional spectral
filtering term to the nonlinear Schréodinger equation, so that light propagation in these
fibers is modeled by

(49) Oy = — 2502 + i + 02,

where the parameter, ¢, is required to be positive, but can be arbitrarily small. Pro-
vided that e > 0, the semigroup for the linearized equation is analytic (see Section 10).
In the frequency domain the additional term corresponds to

(4.10) 0 (w) = —ew?P(w),

which models a frequency-dependent loss. The addition of this term is physically
reasonable since the loss in optical fiber is wavelength dependent with a minimum at
about 1550 nm [1].

THEOREM 4.7. Suppose that the hypotheses of Theorem 4.4 hold, and that in the
fiber amplifier 0 < Qg4 < 00 and (go, B) # (0,0). Furthermore, suppose that the single
mode fiber segments are modeled using (4.9) with ¢ > 0. Then the essential spectrum
of the monodromy operator, M, in (3.1) is given by

(4.11) Uess(M) = Uess(Moo)-

REMARK. For simplicity we state and prove this theorem for the lumped model
of the stretched pulse laser discussed in Section 2. However, (4.11) also holds for a
wide range of lumped models of fiber lasers. Specifically, as we will see in the proof,
in addition to the hypotheses made about the fiber segments, we just require that the
linearizations, U and U, of the transfer operators of the input-output devices in the
model satisfy

(4.12) U, Uy € B(LA(R,C?) N B(H?*(R,C?)),

and that an analogue of Theorem 11.2 below holds for each of them.
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5. Simulation Results. In this section we use formula (4.8) for the essential
spectrum to provide some insights into the roles that the saturable absorber and
the saturation of the gain in the fiber amplifier play in stabilizing the periodically
stationary pulse circulating in the laser. Further details can be found in [30].

Although we are not modeling it here, in addition to its role in pulse amplification,
the fiber amplifier adds spontaneous emission noise to the system [9], which—among
other effects such as random timing and phase shifts of the pulse—manifests itself as
a random superposition of continuous wave perturbations. If the essential spectrum,
Oess(M), lies inside the unit disc in C, then these continuous wave perturbations
decay, which helps ensure pulse stability.

From (2.6) we see that the gain in the fiber amplifier simply depends on the
pulse energy. Consequently, each round trip the noise entering the fiber amplifier
experiences the same gain as does the pulse. Furthermore, as the pulse propagates
through the fiber amplifier, spontaneous emmission noise that is proportional to the
gain is added to the system. The saturation of the gain therefore plays a critical role
in stabilizing the system, since the gain decreases as the pulse energy increases.

On the other hand, with the model we use for the saturable absorber the response
is instantaneous, and is given by

1+ |win(x)|2/Psat

so that the value of the output at = only depends on the input at that x. Therefore,
far from the pulse, where ¥, ~ 0, the loss is ¢y, whereas in the center of the pulse
the loss saturates and is less than ;. Because the loss saturates at high power, the
system can operate so that the gain in the fiber amplifier and the loss in the saturable
absorber balance for the pulse, while simultaneously loss exceeds gain far from the
pulse. Consequently, noise far from the pulse can be suppressed relative to the peak
power of the pulse. The larger ¢y is and/or the smaller Py, is in (5.1), the more the
saturable absorber suppresses noise far from the pulse, and the more stable the pulse
is to noise perturbations. Already in the 1975, Haus [12] identified the need for a
saturable absorber to suppress the growth of continuous waves, while balancing gain
and loss for the pulse. Formula (4.8) for the essential spectrum of the monodromy
operator quantifies this effect for the first time in a lumped model of a fiber laser.

To ensure that a continuous wave perturbation with frequency w does not grow,
we require that [Ay (w)| < 1, which, because of the Gaussian factor in (4.8), holds for
all w provided that

(5.1) () = (1 ) tinto),

Lpa
(52)  (foc)*(1 — L)2GEY <1, wherea%ét:exp{ | gw(t»dt},
0

is approximately equal to the energy gain in the fiber amplifier. That is, far from
the pulse the loss experienced by continuous waves must exceed the gain. Although
(5.2) looks very simple, the essential spectrum can depend in a complex way on the
interplay between all the system parameters, since they all influence the shape of the
pulse and hence the total gain, G%ft, in the fiber amplifier.

For the simulation results we present here, we chose the parameters in the model
to be similar to those in the experimental stretched pulse laser of Kim [22]. The
parameters for the saturable absorber are given below. The saturable absorber is
followed by a segment of single mode fiber, SMF1, modeled by (2.8), with v = 2 x
1072 (Wm) ™!, Bsmrr = 10 kfs? /m, (1 kfs? = 10727 s2), and Lgyr1 = 0.32 m, a fiber
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Fic. 2. Top row: Left: Periodically stationary pulse for Psat = 200 W. Center and right:
Essential spectrum, ocess(M), of the monodromy operator associated with the pulse on the left.
Bottom row: Corresponding results for Psqt = 1000 W. In both cases, £o = 0.05.
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Fic. 3. Left: A plot of the mazimum real eigenvalue, max |\|, vs. £o when Psq = 500 W.
Right: Corresponding plot in which Psqt is varied when £o = 0.05.

amplifier, modeled by (2.5), with go = 6m™!, Egy = 200 pJ, Q, = 50 THz, v =
4.4x 1073 (Wm) ™1, Bpa = 25 kfs?/m, and Lra = 0.22 m, a second segment of single
mode fiber, SMF2, with the same parameters as SMF1, but with Lgype = 0.11 m,
a dispersion compensation element with Spcr = —1 kfs?, and a 50% output coupler,
modeled by (2.11) with £oc = V0.5.

In the top row of Fig. 2, we show the results of simulations performed when Py, =
200 W and ¢y = 0.05. The pulse, v, in the left panel was obtained by numerically
minimizing the L2-error between R (1)) and €1y, over all possible choices of 6 [30].
In the center panel we plot the essential spectrum for the pulse in the left panel. We
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observe that gess(M) consists of a pair of counter-rotating spirals whose amplitudes
rapidly decay to zero. Since the peak power of the pulse entering the saturable
absorber is comparable to P, the saturation of the loss is significant, which helps
to stabilize the pulse. In the bottom row of Fig. 2, we show the corresponding results
with P, = 1000 W. In this case the saturation of the loss is much weaker, and as we
see in the far right panel, there is a range of low frequencies, w, for which |A+ (w)| > 1
and continuous wave perturbations grow.

In the left panel of Fig. 3, we plot the largest value of |A| as a function of ¢y when
P, = 500 W. Since this value remains outside the unit circle as ¢y increases from
0.02 to 0.06, the pulse is unstable over this range. It is only once the unsaturated
gain is sufficiently large that condition (5.2) holds and the essential spectrum is stable.
Similarly, in the right panel, we show the largest value of |A| as a function of Py, when
£y = 0.05. Here, the pulse is unstable for Py, > 300 W, since then the saturation
effect is too weak to ensure that the loss experienced by the noise is sufficiently greater
than that experienced by the pulse.

6. Existence of the monodromy operator. To prove Theorem 4.4 we use the
fact that the monodromy operator, M, is the composition of the linearized transfer
functions, U, of each component of the laser. Therefore, we just need to establish
the result for each of the operators, . For the single mode fiber segments and the
dispersion compensation element, the result is a special case of the corresponding
result for the CQ-CGL equation given in Zweck et al. [39, Theorem 4.1]. For the fast
saturable absorber and the fiber amplifier, the results are given in Proposition 6.1 and
Theorem 6.4 below.

If X is a Banach space, we let || - || denote the norm on X. When the context is
clear, we sometimes omit the subscript X and simply write || - ||

PROPOSITION 6.1. Suppose that Hypothesis 4.1 holds. Then the transfer function,
USA, given by (3.6) satisfies the first two conclusions of Theorem 4./.

Proof. To establish the first conclusion, we use the Cauchy-Schwarz inequality
and the fact that £(1);,,) < £y (see (3.6)) to obtain

262(¢in) T
||uout||L2(R)(C2) < (1 + f(’tbm)) Huin”L?(R,(C?) + W|¢inuin| ||1/Jin||L2(R,(C2)
(6.1) sa

24q 2
< (14604 52 Wallamer ) Honllomc-
sat

By Hypothesis 4.1, 4, € L?(R,C?). Therefore, U5* € B(L?*(R,C?)). Similarly, to
establish the second conclusion, we find that

24y 2
(6.2) [toutll 2 r 2y < (1 + 4o+ P, ||¢in|H2(R,c2)) l[tinl 2 g c2) -
By Hypothesis 4.1, 1;, € H*(R,C2). Therefore, Y54 € B(H*(R,C?)). O

Next, we establish the existence of an evolution family for the linearization (3.3)
of the Haus master equation (2.5), which models propagation in a fiber amplifier of
length Lpa. Let t € [0, Lra] be local time within the fiber amplifier and let s € [0, Lpa].
We study solutions, u : [s, Lra] — H%(R,C?), of

Oru = Lpa (t)u, for 0 < s <t < Lga,

(6.3) i
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where v € H%(R,C?). Here, Lra(t) is the family of operators on L?(R, C?) given by
reformulating (3.3) as

(6.4) Lra(t) = B(£)92 + M(t),
where, setting g(t) := g(¢(¢)),
(6.5) B(t) = 25231 - gJ and M(t)u = M, (t)u — ¢(t) (3 (1), u).

Here, (-, -} is the L2-inner product on L*(R,C?) and

~ t (¢ 02
©6.6) M) = 2001 jpPT + 20397 and () = L (14 5y
2 gOEsat QQ
DEFINITION 6.2 ([27, 5.5.3]). A two parameter family of bounded linear opera-
tors, U(t,s),0 < s <t <T, on X is called an evolution system if
(i) U(s,s) =TI, and U(t,r) oU(r,s) =U(t,s) for0<s<r <t<T, and
(i1) (t,s) = U(t,s) is strongly continuous for 0 < s <t <T.
DEFINITION 6.3. Let A = A(t, ) : [0,00) xR — C2*2 be a bounded matriz-valued
function. We define

(6.7) 1Al = sup [A(E, )| 2 -

THEOREM 6.4. Assume that Hypothesis 4.3 holds in the fiber amplifier. Then
there exists a unique evolution operator, UTA(t,s) € B(L*(R,C?)), for 0 < s <t <
Lpa, where Lya is the length of the fiber amplifier, such that

L [t (, s HB (L2(R,C2)) SGXPH Oo(t_s)}7

2. UMA(t, s)(H?(R,C?)) ¢ H*(R,C?),

3. For each s, UM (-, s) is strongly continuous in that for all v € L*(R,C?), the
mapping t — U (t, s)v is continuous, and

4. For eachv € H?(R,C?), the function u(t) = UFA(t, s)v is the unique solution
of the initial value problem (6.3) for which w € C([s, Lra), H*(R,C?)) and
u € CY((s, Lra), L*(R, C?)).

Proof. The result follows from [27, Theorems 5.2.3 and 5.4.8]. Lemmas 6.5 to 6.7
below guarantee that the assumptions of these theorems hold. 0

LEMMA 6.5. The linear operator, B(t)9? : H?*(R,C?) C L?(R,C?) — L?(R,C?)
is closed with domain H*(R,C?). Furthermore, (0,00) C p(B(t)02) and the resolvent
operator satisfies

1

(6.8) ROV B | 512 g 2y < N

for all A > 0.

Consequently, B(t)0? is the infinitesimal generator of a Cy-semigroup on L*(R,C?).

Proof. Equation (6.8) follows immediately from [39, Lemma 4.1]. The proof is
completed by invoking the Hille-Yosida Theorem [27, 1.3.1]. 0

LEMMA 6.6. Assume that Hypothesis 4.3 is met. Then there exists K > 0 such
that for allt € [0, Lya]

(6.9) H’M(t)H

B(L*(R,C?))
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Ut
w
ot

Proof. We have

ot

(6.10) Hﬁ(t)u‘

ey <[] Tl coy + 1B, ) o)

537 Let |A||r denote the Frobenius norm of a matrix A. We estimate the first term in
538 (6.10) by

—~ 2 —~ 2
539 HM1H < sup HMl(t,x)H
S (t,x)E[O,LFA]xR F
= | g(t) ’
540 = sup Z TIij—&—v\@b(t,x)\QJij—FQv [J@b(t,x)wT(t,z)]”
(t,2)€[0,Leal xR 5 ij
QQ(t) - 2 2 4 - 2
51 | 1P+ 2t Y 1)
(t,x)E[O,LFA]XR 4 i;l / i;l ’
2 2 2
542 +4y > {ﬁ/’(tw)wT(t’x}} | g2 D (Tl ]
ij=1 Y ij=1
2
43 FA () Y |yl [T ()]
ij=1
2
514 +20) 3 1l [Fw o 0] [}
ij=1
_ g(t) 2 4
545 = s T 072t ) 4 av0(0) Re(ap(t, ) T8 (1, 0)
(t,2)€[0,Lra] xR
2
516 <I s {1092+ Aol Re(ap(r, ) Tm(ap(t, )}
547 (t,(I))E[O,LFA]XR

548  which is finite by Hypothesis 4.3.
549 As for the second term in (6.10), by the Cauchy-Schwarz inequality,

550 [l@@)(W (1), Wl L2 c2) < OO L2 @c2y 1P Ol L2 c2 1l L2r 02

) g0 32¢(t)
551 <z - P(t) + xm BN L2 (r,c2) 1wl 2 c2)
sa 9 2w
L1 9 2
552 < 1, — t .
2 < {1, |20 0 e o Il
554 The result now follows, since ||t (¢)| g2 c2y < o0 by Hypothesis 4.3. O
555 Combining [27, Theorem 5.2.3] and Lemmas 6.5 and 6.6, we conclude that
556 {LrA(t) }ref0,Lpa] is @ stable family of infinitesimal generators of Co-semigroups on
557 L*(R,C?). This is the first assumption in [27, Theorem 5.4.8]. The following Lemma
558 establishes the second assumption.
559 LEMMA 6.7. Suppose that Hypothesis 4.3 holds. Then for each v € H?*(R,C?),
560 we have that F(-) = Lra(-)v : (0, Lra) — L*(R, C?) is C*.
561 Proof. We show that F is differentiable with F’(t) = 0;Lpa (t)v. The proof that

562 F’ is continuous is similar. By Hypothesis 4.3, Lga (t)v, 0;Lpa(t)v € L?(R,C?). In
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Appendix A, we show that
IF(t+h) = F(t) = hF' ()] p2p,c2)

C
< {mhalan + 2VBHG(R) + S [4(t+ )| s c2) Galh)
2980 2 /
+ —=—h* sup |E'(7 ) g2 02y |02 ()] 572 o2
o) s B e 1080 e
2g0C
+ go

=17 s [0 (T) 2 e ) 10 )] 2 2
sat TE(t,t+h)

T hGa(h) (0| oo } ol o e,

where
Gi(h) = sup [[(0:B)(7) = (0:B)(t)]|c2x2 ;
TE(t,t+h)
Gy = swp |[@M)(r,@) — @Mk a)|
(6.12) (r,z)E(t,t+h) xR C
Gs(h) = sup [[(0)(7) = (0:9) ()| pr2 (e c2) -
TE(t,t+h)
Ga(h) = sup [[(9:@)(T) = (0:®) (D)l p2r c2) -
TE(t,t+h)

Next, we observe that 3C > 0 such that

(6.13) Gi(h)=C sup ’gQ(T)El(T) — gQ(t)E'(t)‘.
rE(t,t+h)

By Hypothesis 4.3 and the differentiation under the integral sign theorem [14], g and
E’ are C' which implies that G1(h) — 0 as h — 0. Also by Hypothesis 4.3, and
applying the Lebesgue dominated convergence theorem as needed, we conclude that
Gj(h) = 0 as h — 0 for j = 2,3,4. Consequently,

(6.14) [F(t+ h) = F(t) = hE' ()| 2 g c2) < hG(h),

where limy,_,o G(h) = 0. Hence, F is differentiable as required. ]

7. Spectrum of a Multiplication Operator on L?(R,C?). The essential
spectrum of the asymptotic linearized operator, My, is equal to the spectrum of
its Fourier transform, M., which is a multiplication operator on L?(R,C?). In this
section, we derive a formula for the spectrum of a general class of multiplication
operators on L?(IR,C?). The proof is based on that of a similar well-known formula
for multiplication operators on L?(R,C) [5, Prop. 4.2].

DEFINITION 7.1. Let @ : R — C?*2. The multiplication operator, Mg, induced
on L2(R,C?) by Q is defined by

(7.1) (Mow)(x) :== Q(z)w(zx) for all w in the domain
(7.2) D(Mg) = {w € L*(R,C?) : Qw € L*(R,C?)}.

PROPOSITION 7.2. If Q € L™ (R, C?*?), then Mg is everywhere defined, bounded
and closed, with

(7.3) ||MQ||B(L2(R,¢:2))) < ||QH007
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where
(7.4) Q. :=sup | Q(x)||caxo -
z€eR

We now state the main result of this section.

THEOREM 7.3. Let Q € L*(R,C**?) N CO(R,C**?). If |Q(x)|/cexz= — O as
x — £o00, then the spectrum of Mg is given by
oc(Mg) ={N € C : 3z € R such that det(\I— Q(x)) =0} U {0}

(7.5) — {A€C : Iz € R such that \ € o(Q(x))} U{0}.

The proof of Theorem 7.3 relies on several preliminary results. First, Proposi-
tion 7.2 can be improved upon as follows.

PROPOSITION 7.4. Suppose that @ € C°(R,C?*2). Then, the operator Mg is
bounded if and only if Q is bounded. In this case,

(7.6) ||MQ||B(L2(R,¢:2))) =@l
The proof of this proposition relies on the following well-known result on the
Dirac delta distribution.

LEMMA 7.5. Let g E Ll(]R with [, g(z)de = 1. Set g s(z) = +g (%52), where
6 > 0. Then lims_,o [ ¢(x)gs, 5( Ydx = ¢(s) for all $ € L=®(R) N CO(R). That is, for

every € > 0, there exists 6 = d(e, ¢) such that

(7.7) d(s) —e< /R(b(x)gs,g(x)dx < @(s)+e, whenever§ < 0.

Proof of Proposition 7.4. If Q is bounded, then Mq is bounded by Proposi-
tion 7.2. Conversely, suppose Mgq is bounded. Then,

(7.8) ||MQ||B(L2(R’(C2)) > HMQw||L2(R,<c2)»
for all w € L?(R,C?) with |wll 2k c2) = 1. Fix s € R and choose w(z) = ws s(z) =

gs.5(z)v(x), for some vector v(z) € C? and where g 5 is as in Proposition 7.5. If
we require that |[v(z)|c. =1 for all z, then ||wl| 2 c2) = 1 holds. Furthermore, for
each x, we can chose v(z) so that

(7.9) 1Q(z)v(z)llc2 = |Q)]|caxz -
Then

2 2 2
HMQHB(L2(R,(C2)) = ||MQws,6||L2(R,C2) :/ 1Q(%)[cax2 gs,6(x)da.

Let € > 0. Choosing ¢(z) = ||Q(x )HCQM in Proposition 7.5 we find that there exists
5 = (e, s) > 0 so that for all § < &

(7.10) IMallg 2 m,c)) = / 1Q(@) (|22 g5 6(2)dz > [ Q(5)[|Zan — €.
Therefore,

(7.11) 1Ql = sup 1Q(s)lIc2x> < IMallgr2m,c2)) »

and so Q is bounded, and (7.6) holds by Proposition 7.2. d
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Next, in Proposition 7.6 and Proposition 7.7 we state some properties of a matrix
valued function, Q € L*>(R,C?*2), which are used in the proof of Proposition 7.10
below.

PROPOSITION 7.6. Let Q : R — C**2 be continuous with || Q|| < oo and suppose
that 0 ¢ Im(det Q). Then Q' : R — C?*2 is continuous and HQ71H00 < 00.

Proof. Since, 0 ¢ Im(det Q), there exists € > 0 such that |det Q(x)| > ¢, for all
x € R. So,

~ 1 Qa(z) —Qi2(x)
Q™ = 5w |on® @

exists and is continuous. Furthermore,

RPENT 2 R@)E AR g _ 42

PROPOSITION 7.7. Let Q € C?*2 be a matriz. Then there exists a vector u € C2
with ||ul|c2 =1 so that

(7.13) | Qu2, < |det Q|.

REMARK. Geometrically Q changes areas by a factor of |det Q|. This result says
there exists a direction w in which Q changes lengths by at most \/|det Q).

Proof. The following self evident claims leads to the proof of (7.13).

CrLamM 7.8. Let Q = UR be the QR decomposition of Q, where U is unitary and
R is upper triangular. Suppose (7.13) holds for R, then it also holds for Q.

CLAIM 7.9. Suppose Q = aQ for some a € C and that the (7.13) holds for Q.
Then (7.13) also holds for Q.

By Claim 7.8 it suffices to establish (7.13) for R = {8 Z] .

CaseI:Ifa =0, let w = (1,0). Then Ru = (0,0). Hence, ||R“H<2c2 =0=|detR|,
and so (7.13) holds.

Case II: If a # 0, then by Claim 7.9 we just need to show that (7.13) holds for ma-

trices R of the form R = [(1) Z] . If |d| > 1, we choose u = (1,0) to obtain Hf{u‘

1 < |d| = |detR|. Finally, if |d| < 1, choosing u = (—b/\/l + [b]2,1/4/1 + \b|2) we
~ ~ 2

3 — 2 _ 2 2 2 _

obtain Ru = (0,d)/ T+, Hence, ’RuHCQ = |d2/(1 + b?) < |d? < |d] =

|det R. O

PROPOSITION 7.10. Let @ : R — C**2 be continuous with || Q|| < oo. Then the

operator Mg has a bounded inverse if and only if 0 ¢ Im(detQ). In that case, Q has
a bounded inverse, Q~', and

2
([32:

-1
MQ = MQ—I.
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654 Proof. Suppose 0 ¢ Im(detQ). By Proposition 7.6, ||Q*1HOO < oco. Hence, by
55 Proposition 7.4, ./\/1(51 is bounded and

656 (7.14) M|y sy = 197 0

657 Conversely, suppose that Mq has a bounded inverse. Then for all w € L*(R, C?),

1 [Mquwl|
658 (7.15) N = QW r2(r,c2)
[ ol e o
B(L%(R,C?))
659 We will show that for all z € R
2
660 (7.16) |detQ(z)] > o
661 and hence 0 ¢ Im(detQ).
662 Assume for the sake of contradiction that there exists s € R such that
2

663 (7.17) |detQ(s)] < —.

8
664 Let w(z) = ws () = \/gs,6(x)u(x), where g 5(z) is as in Proposition 7.5 and, using
665 Proposition 7.7, for each 2 € R, u(z) € C? is chosen so that ||u(z)||c. = 1 and

666 (7.18) 1Q(z)u(@)]% < |detQ(z)] .

667 Let ¢ > 0. By (7.18) and Proposition 7.5 there exists ¢ > 0 so that

668 ‘|MQ'LU3,6||%2(R7(:2) Z/RHQ(QJ)\/MU(@

2

4o < [ gus(o)|detQ(o)] do
C2 R

2
669 < |detQ(z)] +€ < T te

670 8

671 Choosing € = %2 and applying our assumption (7.17) we find that
. v

672 (719) ||MQ’U)37§ L2(R,C2) < 5,

673 which is a contradiction to (7.15). Therefore, for all x € R |detQ(z)| > %2. Hence,
674 0 ¢ Im(detQ). Finally, using (7.6), we conclude that ||Q_1HOo < 0. O

675 Proof of Theorem 7.3. By Proposition 7.10

676 X € p(Mq) <= M,_q has a bounded inverse
677 <= 0 ¢ Im(det(\I — Q))
678 <= Je > 0 such that Vo € R |det(A\I — Q(z))| > e.

680 Therefore,

AEa(Mq) <= ¢ p(Mq)

681 (7.20
s (720) &= Ve > 03z € R such that |det(\I — Q(z))] < e.
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Let
(7.21) d(Mgq) ={X € C : 3z € R such that det(A\I — Q(z)) = 0}.
Then 6(Mgq) C o0(Mgq). Let A € 0(Mq)\d(Mgq). To complete the proof, we must

show A = 0. Choosing € = 1/n in (7.20),
(7.22) Jz,, € R such that det(A\I — Q(zy,)) < 1/n.

Suppose that the sequence {z,}52, is bounded. Then there exists a convergent
subsequence x,, — x.. Since, we are assuming that Q is continuous,

(7.23) det(AI — Q(z4)) = lim det(AI — Q(zy)) = 0.

n—oo
Therefore, A € 5(Mgq), which is a contradiction. Hence, z, is not bounded and so
(7.24) Jx,, — oo such that [|Q(zy)|/c2x2 — 0.

Let a,, = det(A\I — Q(x,,)) = A2 — trace(Q(z,))\ + det(Q(z,,)). Therefore,

(7.25) A= % {trace(Q(mn)) + \/traceQ(Q(xn)) — 4(det(Q(zr)) — an)

Now, by (7.22), a, — 0 and by assumption ||Q(z,)| — 0 as n — oo. Therefore,
A = 0 must hold. O

8. The Essential Spectrum of the Asymptotic Monodromy Operator.
In this section we prove Theorem 4.6 which gives the formula for the essential spectrum
of M. The proof relies on the following two results.

a

LEMMA 8.1. Let A(a,b) = {b

_b] . Then
a

(8.1) eAlab) — e R(b),

cosb —sinb

where R(b) = {sinb cosb

] is a rotation matriz.

Proof. Diagonalize A(a,b) and use Euler’s formula. |
Next, working with Definition 4.5, we have the following result.

PROPOSITION 8.2. Let Mo, : L?(R,C?) — L2(R,C?) be the asymptotic mon-
odromy operator given by (3.9). Then

(8'2) O'ess(Moo) = Uess(ﬂoo)y
where
(8.3) Moo = FoMo o F L.

Here, F : L*(R,C?) — L?(R,C?) is the Fourier transform.

Proof of Theorem /.6. By Proposition 8.2 it suffices to compute gess(Moo). First,
we show that

(8.4) My = Z/l(?oc ) L{OIZCF o Z/{EOMF2 ) L{CI;A o Z/IOSOI\/IF1 o UEOA
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is a multiplication operator by showing that each transfer function LA{OAO is a multiplica-
tion operator. Here, for each laser component the transfer function U, is the Fourier
transform of the asymptotic linearized transfer function, Us., given in Section 3. We
then use Theorem 7.3 to obtain gess(Moo ).

For the saturable absorber,

(8.5) U in) (@) = (1 = Lo)Tin(w),

and, as in the derivation of (2.9), for the dispersion compensation element,

(5.6) @2 )() = e { A (0.5 docr ) baino)

For the two single mode fiber segments, a similar formula holds for each solution
operator, UEOMF, but with Bpcr replaced by SsmrLsye. For the fiber amplifier,

2 Lpa w2
(87) (agoAain)(w> = exp {A (; (1 - ;‘;2) A g(t)dt7 2ﬂFALFA> } ’l/iin(W).

g

Finally, LAlO%C = POC which is given by (2.11).
Combining these formulae, applying Lemma 8.1, and using the fact that R(6;) o
R(62) = R(#1 + 02) we have

(8-8) (Mooain)(w) = Mw(w)ain(w)»

where

(8.9) Mo (w) = & \_/;0) exp {; (1 - ‘g;) /OLFA g(t)dt} R (W;BRT> .

Using Theorem 7.3 with Q = Moo (w), we obtain

0(Moo) = {As(w) € Clw e R}U{0},

(8.10) M () = (1 \/;0) exp {; (1 - g;) /OLFA g(t)dt} exp {ﬁ:iujﬁm} :

Finally we show that op (M) = ¢, from which it follows that gess(Moo) = 0(Moo).

For this we recall that the point spectrum of a multiplication operator such as M
is given by [5]

(8.11) ot (M) = {A eC:p {w ER : det[Muo(w) — A = o} > o} :

where 11 denotes Lebesgue measure on R. Therefore, to show that Upt(f/l\oo) = ¢, we
must show for all A € C that the set

(8.12) Sy={weR : A(w)=Aor A_(w) = A},

has measure zero. We observe that A+ : R — C generically parametrizes a pair of
counter-rotating spirals. Invoking the assumptions of the theorem, since ¢y, # 1, and

either Srr # 0 or Q, < oo and fOLFA g(t)dt # 0, the mappings Ay : R — C are at
most countable-to-one, which implies that S, has measure zero for all A € C. ]
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9. Relative compactness for the linearized differential operators in the
fiber amplifier. In this section we show that the linearized differential operator
in the fiber amplifier, £(t), is a relatively compact perturbation of the asymptotic
linearized differential operator, L, (t), provided that the nonlinear pulse satisfies some
reasonable weak regularity and exponential decay assumptions.

By (3.3), the operators £(t) and L. (t) are related by

(91) ‘C(t) = ‘Coo(t) + M(t)v
where
(92 £ult) = B (525 ) 2 + gol0.

with B(a, b) = {Z _ab] , and where M(¥) is the matrix-valued multiplication operator

M(t’ ')u Ml(tv )u - ¢(t7 )<¢(tv ')a u>a
(94) Ml(t7') :7|¢(tﬂ.)|2'] +27J’ltb(t7')¢T(tv')'

Here ) is the pulse about which the Haus master equation (2.5) is linearized and ¢
is given by (6.6). Note that here we have chosen M so that M(¢,z) — 0 as z — +o0.

THEOREM 9.1. Assume that Hypothesis 4.3 is met and that (go/Qg, ) # (0,0).
Then, the differential operator, L(t), given in (9.1), is a relatively compact perturba-
tion of Loo(t) in that there exists a X\ € p(Loo) so that the operator Mo (Lo — A) 71
on L*(R,C?) is compact.

Proof. Using an idea of Kapitula, Kutz, and Sandstede [16] in their paper on the
Evans function for nonlocal equations, we observe that

where J : L?(R,C?) — C is given by J(u) = (9(t,-),u), and K : C — L?(R,C?) is
given by K(a) = a¢. Under Hypothesis 4.3, the analogous result in Zweck et al. [39,
Theorem 3.1] guarantees that Lo, + M; is a relatively compact perturbation of £..
The theorem now follows from the fact that Lo 7 is compact, since it factors through
the finite dimensional space, C. O

10. Analyticity of asymptotic linearized operator in the fiber amplifier.
In this section, we show that the operator L. (t)Us(t,s) is bounded on L?(R, C?),
where L (t) is the asymptotic linearized operator in the fiber amplifier given by
(9.2), and U (t, s) is the corresonding evolution family. Zweck et al. [39] previously
established an analogous result for the constant-coefficient complex Ginzburg-Landau
equation under the assumption that the spectral filtering coefficient in the equation
is positive. These results will be used in Section 11 to prove our main result, Theo-
rem 4.7.

We begin by recalling what it means for an operator to be sectorial [24, 27].

DEFINITION 10.1. A linear operator A: D(A) C X — X is sectorial if 3 w € R,
0 e (n/2,m], M >0 so that
1. p(A) D Sow i ={X € C|A#w, |arg(A —w)| < 0}, and
2. IR A < %, for all A € Sy ,.
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REMARK. Lunardi [24, Chapter 2] shows that if A is a sectorial operator then
a family of operators, T (t) = e, for t > 0, can be defined in terms of a Dunford
contour integral so as to satisfy the semigroup properties
1. T(0)=1Z,
2. T(s+1t)=T(s)T(t), for all T,s >0,
and for which the mapping t — e** : RT — B(X) is analytic. Furthermore,

d

tA tA
— et = A
dt

(10.1)

Such a semigroup is called an analytic semigroup.

We consider solutions, w : [s, Lra] — H?(R,C?), of the initial value problem

Ou = Loo(t)u, for t > s,

(10.2) u(s) = v, for v € H*(R,C?).

THEOREM 10.2. Suppose that 0 < Q4 < oo, that (go,5) # (0,0), and that ¢ is
differentiable with respect to t. Then, there exists a unique evolution system, Ux(t, s),
for (10.2) with 0 < s <t < Lga so that

1. 3 C so that for all 5,t we have [|Us(t, 5)||B(2r,c2)) < C,

2. Uso(8,8) =T and U (t,7) = Uso(t, 8) 0 Us(8,7) for all 0 <r < s <t < Lya,

3. U (t,s) € B(L?(R,C?), H?(R,C?)),

4. The mapping t — Ux(t,s) is differentiable for t € (s, Lra] with values in
B(L3(R,C?)), and 0o (t,8) = Loo(t)Ux(t,s), i.c., the function u(t) =
U (t, s)v solves (10.2), and

5. 3 C1 and Cy so that V0 < s <t < Lga,

G(t,s)
t—s

t

(10.3) 1£oo (U (t, 8)llBz2Rc2) < Ch

where G(t,s) = exp (% NG dT).

Proof. We will show that the first four conclusions of the theorem hold for the
evolution operator, Vu(t, s), associated to the differential operator, B(t)9?, and that

Cy
t—s

(10.4) I(B()Z) Vs (t, 8)llr2(rc2) <

Then, the theorem immediately follows for the original operators Lo (t) = B()02 +
29(t)I with Use (t,s) = G(t, 5)Voo (t, ). Applying a result from Lunardi [24, Chap. 6],
to establish the result for Vo (¢, s) it suffices to show that the operator A = A(t) :=
B(t)9? is sectorial and that ¢t — A(t) € Lip([0, Lra], B(H*(R, C?), L*(R, C?))).

To show A is sectorial, we first observe that A is closed and that 3 w > 0 so that
VA > w, A € p(A) and |R(A : A)|| < . Therefore, by [27, Cor 1.3.8], A is the
infinitesimal generator of a Cy-semigroup for which ||7(¢)|| < e**. By the proof of
[39, Lemma 5.2], for all ¢ > 0,

(10.5) IR(c +it: A)|| < |7_C|

To show that this condition implies that A is sectorial we make use of [27, Thm
2.5.2]. However, as stated, this theorem requires that the semigroup 7 (¢) is uniformly
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bounded and 0 € p(A). Since neither of these conditions is guaranteed to hold, we
proceed as follows. Fix € > 0, define 7(t) := e~ (+*)tT(¢), and let A, = 22=(0).
Then || 7:(¢)|| < 1 is uniformly bounded and 0 € p(A¢). Therefore, the assumptions of
[27, Thm 2.5.2] hold for A.. Furthermore, (10.5) holds for A, since R(o + i1 : A.) =
R(c +e+w+ir: A). So by [27, Thm 2.5.2], 30 < < §, M > 0 so that

L p(A) DX ={AeC: |arg)| < 5+ 6} U{0}, and

2. [R(A: A < %, for all A € 3\ {0}.
Translating these conclusions back into statements about A itself, we obtain

M

(10.6) IR A= IRA = (e +w) A < i— =

whenever A — (e +w) € X\ {0}, which holds precisely when A € Sz 5 c4,. Therefore,
the operators A = A(t) are sectorial.
Finally, the mapping ¢ — A(¢) is Lipschitz, since 3 C so that

l9(t) —g(s)| _ Clt = 3)|

IAGE) = Al e.caom.com < 1B ~ Bls)ews = 5o < 2002,

since t — ¢(t) is Lipschitz if 4 is differentiable with respect to ¢. d

11. The essential spectrum of the monodromy operator. In this section
we prove the main result, Theorem 4.7, which gives conditions under which oess(M) =

Oess (Moo)

Proof of Theorem 4.7. The lumped model we consider consists of fiber segments
(single-mode fibers and a fiber amplifier) and discrete input-output devices (a disper-
sion compensation element, an output coupler, and a fast saturable absorber). We let
t € [0, T] denote location in the laser loop. In a fiber segment of length, L, that starts
at location ¢ = T4, we have t = tioc + T1 € [T1,T1 + L], where t),. denotes distance
along the fiber. For an input-output device at location, ¢, we use ¢t_ and ¢, to de-
note the locations of the input and output to the device, and we impose the ordering
t_ <ty. Welet U(t,s) and U (t, s), for t > s, denote the linearized evolution and the
asymptotic linearized evolution operators from location s to location ¢. In particular,
for an input-output device at location, ¢, the linearized transfer operator of the device
is denoted by U(t4,t_). The corresponding monodromy operators are then given by
M =U(T,0) and Mo, = U (T,0). Asin (3.1), M and M are both compositions
of the linearized transfer operators of the fibers and devices in the lumped model. By
Weyl’s essential spectrum theorem [20], we just need to show that there is a compact
operator, K so that

(11.1) M= M +K.

To do so we will inductively show that at the location, ¢, of the end of each fiber
segment that

(11.2) U(t,0) = U (¢,0) + K(2),
and that at the exit, {1, to each input-output device, that
(11.3) Ut 0) = Uno (b4, 0) + K(t4),

for some compact operators, K(t) and KC(¢4).
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First, we show that (11.2) holds in the fiber amplifier. The argument is the same
for the single-mode fibers. For a fiber segment of length, L, starting at location, 77, an
argument based on the variation of parameters formula (see [39, Lemma 5.1]) shows
that, for all t € [Ty, Ty + L],

(11.4) U(t,0) = Uso(t,Ty) oU(T1,0) + /t Uoo (t, ") o M(t') o U, 0) dt’,
T

where M is the multiplication operator given by (9.3). Indeed, this equation is con-
sistent at ¢ = T; and implies that
(11.5) O U(t,0) = L(t)U(t,0).

LEMMA 11.1. The operator

(11.6) K(t) = t Uso (t,) o M(t") o U(H', 0) dt’
T

18 compact.

Given this lemma and substituting the induction hypothesis,

(11.7) U(T1,0) = Uso(T1,0) + K(T1),
into (11.4) yields (11.2) with
(11.8) K(t) = Uso(t,T1) o K(Ty) + K(t),

which is compact since the composition of a bounded and a compact operator is
compact.
Second, we show that (11.3) holds for each input-output device. Let

(11.9) B(ty,t-) = Uty t-) —Uso(t4,t-).

For all the input-output devices in the lumped model we are considering, except for
the fast saturable absorber, B(ty,t—) = 0. By (3.6), for the saturable absorber,
B(ty,t_)(u) = Bu is a multiplication operator with

[ 200

(11.10) B(x) = (o — £(0(2) T =5 ",
where

Lo
(11.11) 0(1)

- 1 + |win|2/Psat.

Since 1 is assumed to be bounded, B(ty,t_) € B(L?(R,C?)) is bounded but is not
compact. Nevertheless, we have the following theorem.

THEOREM 11.2. Under the assumptions of Theorem 4.7, for the fast saturable
absorber the operator, B(ty,t_) oUs(t—,0), is compact.

Given this theorem and substituting the induction hypothesis,

(11.12) Ut—,0) =Uso(t—,0) + K£(t-),

into U(t4,0) =U(t4,t_) olU(t_,0) yields (11.3) with

(11.13) K(ty) = Blty,t_) oUss(t—,0) + U(to,t_) o K(t_),

which is compact by Theorem 11.2 and Proposition 6.1. O
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Proof of Lemma 11.1. The proof uses the same basic ideas as in the proof of the
analogous result for the complex Ginzburg-Landau equation given in [39, Theorem
5.1]. Here we confine our attention to showing that the integrand, C, in (11.6) is
compact. To do so, it suffices to show that the adjoint, C*, is compact.

Throughout the proof, we use times, 0 < s < t < L, that are local to the fiber,
and we let 7 = L —t and 0 = L — s be the corresponding backwards time variables.
Since the adjoint differential operator is defined by £*(7) := [£(L —7)]*, we have that

(11.14) L(r) = L3 (7) + M*(L — 7).

By definition, the adjoint linearized evolution operator, U*(o,7), in the fiber is the
operator that satisfies

(11.15) O, U (o,7) = L*(o)U* (0, T).

This operator is characterized by the equation

(11.16) U(t,s)u(s), v(1)) 2r,c2y = (u(s), U™ (0, 7)v(T)) L2(r,c2)-
Therefore,
(11.17) U, )" = U (L—s,L—1).

Letting 7/ = L — t/, we find that
(11.18) C* = U*(L, 7)o M*(L —7") ol (7', 7).

As in Theorem 9.1, £*(7') is a relatively compact perturbation of £%_(7'). Therefore,
there is a A(7) € p(L%, (7)) so that M*(L — 7/) o (L% (7') — A(/))"! is compact.
Furthermore, by Theorem 10.2 for the fiber amplifier (which also holds for the adjoint
operators) and the corresponding result for the single mode fibers (modeled with
the additional spectral filtering term as in (4.9), see [39, Lemma 5.2]), we have that
(L5 (") = A(7") oUZ (7', 7) is bounded. Therefore,

(1119) € = U (L, 7)oM (L—7)o(£5 () =\ (")) "L o( L2 () =AU (7', 7).

is compact, as required. ]

The proof of Theorem 11.2 relies on the Kolmogorov-Riesz compactness theorem,
which can be stated as follows [10].

THEOREM 11.3. A subset, § C L?(R,C?), is totally bounded if and only if the
following three conditions hold:
1. § is bounded,
2. for all € > 0 there is an R > 0 so that for all f € 5,

(11.20) / | f(z) |22 dx < €2, and

|z|>R

3. for all € > 0 there is a 6 > 0 so that for all f € §F and y € R with |y| < 4,

(11.21) Jlr 4w - r@)tade < &
R
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Proof of Theorem 11.2. We first show that, at the input to the saturable absorber,
(11.22) Uso(t_,0) € B(L*(R,C?), H*(R,C?)).

This property holds since the transfer operators for the fiber amplifier and the single-
mode fibers with an additional spectral filtering term satisfy

(11.23) UL UD€ B(L*(R,C?), H(R,C?)),

and since (4.12) holds for the DCF element and the output coupler. To establish
(11.23) for UEA | we use (8.7) to obtain

(11.24) U )7 c2y < Coll(1 + W) UEAG) (W) 1728 02
(11.25) =0 /R(l +w?)?exp (1 —w?/Q5)Gra) [U(w)||22 dw
(11.26) < C2||u||%2(R,<C2)'

The proof for UMY is similar.

From this point on, the proofs is analogous to the proof of [39, Theorem 3.1] that,
for the complex Ginzburg-Landau equation, £(t) is a relatively compact perturbation
of Lo, There we showed that the operator M(t) o (Lo, — A\)~! was compact using
the exponential decay and weak regularity of 1) and the fact that (Lo — A\)~! maps
bounded sets in L?(R, C?) to bounded sets in H?(R, C?) (endowed with the standard
Sobolev norm). Here we show that K := B(ty,t_) o Us(t—,0), is compact using
the exponential decay and weak regularity of 1 in the saturable absorber, together
with (11.23). Specifically, it suffices to show that for any bounded family of functions,
$ C L*(R,C?), the subset § = K($) C L%(R,C?) is totally bounded. To do so, we
check the three conditions of the Kolmogorov-Riesz compactness Theorem 11.3.

For the first condition, we observe that § is bounded since the operator I and the
subset §) are both bounded. Let & = U (t_,0)($) C H*(R,C?). Since $ is bounded,
(11.22) implies that

(11.27) sup [|g| a2 (g.c2) < oo
geB

To verify the second condition, given f € §, there is a ¢ € & so that f = By
where B is given by (11.10). Therefore,

(11.28) / 1 (@)1 da < / B ()| 22z lg(2)l[2= da.
|lz|>R lz|>R
Let Co = sup||g|lz2r,c2)- By Hypothesis 4.1, 3 Ry > 0 so that ||B(x)[c2x2 <

ge®
e~ "1*l /Cg for all |z| > Ry. Therefore, if R > Ry,

1
a29) [ @lkde < e [ fg@lde < o0 < e,
o[> R C@ |z|>R

provided also that R > |loge|/r.
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For the third condition, we recall from Hypothesis 4.1 that B € C!(R,C?*?).
Since & C H?(R,C?), we know that § C H'(R,C?). By a result in Evans [6, §5.8.2]
on the difference quotient of a H' function, we find that,

/R 1£(@+ ) — F@)2 do < [yl [ ol 2agmcn,

2
< |yl* [IB2gllz2®.c2) + Bzl 2z c2)]
(11.30) < Cly? maX{”BH%w(R,Cz)a ||Bm|\2Loo(JR,cc2)} ”g”%-IZ(R,CZ)’

for some constant, C'. Finally, by Hypothesis 4.1 and (11.27), the right hand side of
(11.30) can be made arbitrarily small, provided y is close enough to zero. 0

Appendix A. Completion of Proof of Lemma 6.7. To complete the proof
we establish the estimates in (6.11) and (6.12). By (6.4), (6.5), and (6.6),

[F(t 4+ h) = F(t) = hF' ()] L2 p c2)

< |{B(t+h) — B(t) — hatB(t)}agva(R,@)

+ H{Ml(t +h)— Ml(t) — 8tM1(t)}’U’

L*(R,C?)

+ bt + h)(h(t + h),v) = d(t)(P(1), v) — hd(P(t){Ph(t), V)| L2 r,c2)-

To establish (6.11) we estimate each of the term in (A.1). We estimate the first
term in (A.1) by

{B(t + h) = B(t) — hoB(£)}020]| ;2 g 2

< B+ 1) = B() ~ hOBOsrs [ [020(0)]2 o
R
t4h 2 ,
s| / {0B)(7) — OB)Odr| 0o,
F
2 t+h 2 )
-y / {(OB)55(r) — (OB ()}dr| 0] co,
ij=1
2 t+h ) )
<3 h / (OB)(7) — (OB (P dr [[0)gasco -
ij=1

where the last inequality follows from

/: f(r)dr

which is a special case of the Cauchy-Schwarz inequality. Consequently,

2 b
(A2 <®-a) [ If)ar

[{B(t +h) — B(t) — hatB(t)}aivHLQ(]R,CQ)

A3
(A.3) <2Vah s [(OB)(T) = (OB)Dllcers [0l
TE(t,t+h)
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Performing a similar calculation to estimate the second term in (A.1), we obtain

—~ —~ —~ 2
[ ORS IORY EA A .
2
t+h N N 5
<[] tod)ee) - @M o) de
R t C2x2
t+n - 2 )
<suwp| [ (@M (r2) ~ @Mt 0)dr| (ol
z€R ||/t P
2 t+h N N 2 )
<swp Y | [ {050 - @Mt} dr] ol
IeRi,j:l t
2 t+h N N 2 )
< sup > h/ ’(anl)ij(Ta z) — (0:M)y5(t, 1?)‘ dr ||vl[g2 @ c2)
rER =1 1
—~ —~ 2
<1 s |@M)(ne) - @M)G)| ol
(7,@)E(t,t+h) xR r
— —~ 2
A4 <82 s @M@ - @M)ED)| L Il -

(1,z)E(t,t+h) xR

Next, adding and subtracting ¢(t + h){1(t),v) in the third term of (A.1), we
obtain

@t + h) (P (t + h),v) — @(t)((t), v) — hOy($(t)(P (1), v))l L2 (r.c2)
(A.5) <@t + h) (Wt + h) — (1), v) — P(t) (s (1), V)| L2 (r c2)

+ [He(t + h) = &(t) — hord(t) } (b (1), V)| L2 (m,c2) -
Now, for any u, v, w € L*(R,C?),
(A.6) ||u<vvw>||L2(R,(C2) < HU‘HLQ(R,CQ) ”vHL2(R,C2) ||w||L2(]R,C2)'

To estimate the first term in (A.5), we add and subtract ¢(t + h){(hd:1(t), v) and use
(A.6) to obtain

[t + h)(p(t + h) — (1), v) = (1) (RO (1), V)| L2 (r,c2)

< {1000+ Wllisgen 900+ 1) = 9(0) ~ WOBO e
+ ot +h) — S 12 c2) 1RO )] 12k c2) } 1]l 22 (R c2)

t+h
{104 Wlpe | [ (@) - @) @)ar

(A.7) L2(R,C2)
t+h
bl [ @owr 19 (8) 2 s o } ol oo
t L2(R,C2)
< {h ot + ) 2mc2y sup  [[(0ep)(T) = Q) ()]l 12 (m c2)
TE(t,t-{-h)

+h* sup [[(08) (D) p2r.c2 |5t¢(t)||Lz(R,cz>}Ilvlle(R,czy
TE(t,t+h)

This manuscript is for review purposes only.



1003

1004

1008

1010

1011

1012

1013

1014

1015

30 V. SHINGLOT AND J. ZWECK

Now,
C
(A.8) ||¢<>||L2<W>_g“ N0 2
and
1 -2 (t)
o0t < (o] | (v 230)
L2(R,C?) gOEsat bat L2(R,C2)
02 (t
(A9) +0)o (¢<t>+ o) }
g L2(R,C2)
2 2g0C
<ZEIE O] 10 aseicn + e 1080 s e o
sat

Substituting (A.8) and (A.9) in (A.7), we obtain

[t + h)(p(t + h) — (1), v) = (1) (RO (1), V) L2 (r 02

gohC
< { O -+ W)lscsy s HOW)E) = (OOl
sat TE(t,
(A.10) 2g2h2C
$ 200y B () 10080 o
sat  TE(t,t+h)
2g0h%C
L2000 10 egecoy 100 o } oll o e co -
Egat TE(t,t+h)

Next to estimate the second term in (A.5) we use (A.6) to obtain

H{o(t + h) — @(t) — hard(t) HY (1), V)|l 12 c2)
<ot +h) = &(t) — hdr ()| 2 c2) YOl L2 c2) V] L2(r 2y 5

and observe that, by (A.2) and Fubini’s theorem,
(A.12)

t+h
(¢ + h) — B(t) — hdrd(O)% 2 m,c2) = H / (0:$)(7) — (Be) (1)) dr

(A.11)

2

L2(R,C2)
<h / 10:)(r) — (@) (D)2 c2) b

<h? sup ||(0:9)(T) — (8t¢)(t)||2L2(R,C2)'
TE(t,t+h)

Finally, substituting (A.3), (A.4), (A.11), and (A.12) in (A.1), we obtain (6.11).
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