Euclidean Invariant Computation of Salient Closed Contours in Images

by

John Zweck 1 and Lance Williams 2

 $^{\rm 1}$ Mathematics and Statistics, University of Maryland Baltimore County $^{\rm 2}$ Computer Science, University of New Mexico

zweck@umbc.edu

http://www.photonics.umbc.edu/home/members/jzweck/index.html

The Contour Completion and Saliency Problem

Compute the most salient closed curve in an image consisting of spots

Input Spot Image

Stochastic completion field

$$b: \mathbf{R}^2 \to \mathbf{R}$$

$$c: \mathbf{R}^2 \times S^1 \to \mathbf{R}$$

 $c(\vec{x}, \theta)$ = Probability a closed curve thru spots goes thru (\vec{x}, θ)

Properties of computation

All functions are represented as $f = \sum_{n=1}^{N} c_n \Psi_n$

The computation:

- Acts on the coefficients c_n
- Is implemented in a finite discrete neural network
- Is based on a prior distribution of closed boundary contours
- Is Euclidean invariant in the continuum

Prior probability distribution of boundary contours

- ullet Boundary contours are characterized by a random walk on ${f R}^2 imes S^1$
 - Particles move at constant speed in ${f R}^2$ in direction heta
 - Direction θ undergoes a Brownian motion on S^1
- $P(\vec{x}, \theta; t) = Probability that a particle is at <math>(\vec{x}, \theta)$ at time t
- Fokker-Planck equation [Mumford, 1994]:

$$\frac{\partial P}{\partial t} = -\cos\theta \frac{\partial P}{\partial x} - \sin\theta \frac{\partial P}{\partial y} + \frac{\sigma^2}{2} \frac{\partial^2 P}{\partial \theta^2} - \frac{1}{\tau} P,$$

• Probability particle goes from (\vec{x}, θ) to (\vec{y}, ϕ) :

$$P((\vec{y}, \phi) \leftarrow (\vec{x}, \theta)) = \int_0^\infty P(\vec{y}, \phi; t) dt, \quad P(\vec{y}, \phi; 0) = \delta_{(\vec{x}, \theta)}(\vec{y}, \phi)$$

Constraining the prior by a spot image

Model input as finite collection of edges i:

$$b_i(\vec{x}, \theta) = \text{Prob}(\text{Edge } i \text{ is located at } (\vec{x}, \theta))$$

- Initially, no preferred orientations: $b_i(\vec{x}, \theta) = b_i(\vec{x})$
- Assume edges are distinguishable: $b_i(\vec{x}) b_j(\vec{x}) = 0$
- $b(\vec{x}) = \sum_{i} b_{i}(\vec{x}) =$ Intensity of spot image

Markov process with states i and transition probabilities $P(j \leftarrow i)$:

$$P(j \leftarrow i) = \iint b_j(y) P(y \leftarrow x) b_i(x) dx dy, \qquad x = (\vec{x}, \theta)$$

The eigensource and eigensink fields

• Let Q be the integral linear operator on $L^2({f R}^2 imes S^1)$ with kernel

$$Q(y,x) = b^{1/2}(y) P(y \leftarrow x) b^{1/2}(x)$$

• Let s and \overline{s} be eigenfunctions: $Qs = \lambda_{\max} s$, $\overline{s} Q = \lambda_{\max} \overline{s}$

The stochastic completion field

- $c(\vec{x},\theta)$ = Probability a particle starting at (\vec{x},θ) returns to (\vec{x},θ) after passing through a subset of the edges i
- [Williams and Thornber, 2001] By Perron–Frobenius Theorem:

$$c(\vec{x}, \theta) = \frac{p(\vec{x}, \theta) \, \overline{p} \, (\vec{x}, \theta)}{\lambda_{\mathsf{max}} \int s(\vec{y}, \phi) \overline{s}(\vec{y}, \phi) \, d\vec{y} d\phi}$$

where the source and sink fields are

$$p = Pb^{1/2}s$$
 and $\overline{p} = \overline{s}\,b^{1/2}P$, with $P(y,x) = P(y \leftarrow x)$

We want a

biologically-plausible Euclidean-invariant computation of c

Two Point Completion Fields

Standard finite difference scheme in Dirac basis is not Euclidean invariant

Shiftable-twistable bases

• Shift-twist transformation on ${f R}^2 \times S^1$:

$$T_{\vec{x}_0,\theta_0}(\vec{x},\theta) = (R_{\theta_0}(\vec{x}-\vec{x}_0), \theta-\theta_0)$$

• A computation C on ${f R}^2 imes S^1$ is shift-twist invariant if:

$$\begin{array}{ccc}
b & \xrightarrow{C} & c \\
T_{\vec{x}_0,\theta_0} \downarrow & & \downarrow T_{\vec{x}_0,\theta_0} \\
T_{\vec{x}_0,\theta_0}b & \xrightarrow{C} & T_{\vec{x}_0,\theta_0}c
\end{array}$$

• A finite set \mathfrak{F} of functions on $\mathbf{R}^2 \times S^1$ forms a shiftable-twistable basis if, for all $(\vec{x}_0, \theta_0) \in \mathbf{R}^2 \times S^1$,

$$T_{\vec{x}_0,\theta_0}(\operatorname{Span}\mathfrak{F}) \subset \operatorname{Span}\mathfrak{F}$$

The Gaussian-Fourier basis

ullet A periodic function $\Psi:[0,X]^2 imes S^1$ is shiftable-twistable if

$$T_{\vec{x}_0,\theta_0}\Psi = \sum_{\vec{k},m} b_{\vec{k},m}(\vec{x}_0,\theta_0) T_{\vec{k}\Delta,m\Delta_{\theta}} \Psi$$

- ullet Bandlimited functions are shiftable-twistable [Simoncelli et~al.,~1992]
- The Gaussian-Fourier shiftable-twistable function:

$$G_{\omega}(\vec{x},\theta) = \exp(-\|\vec{x}\|^2/2\nu^2) \exp(i\omega\theta)$$

The Gaussian-Fourier shiftable-twistable basis:

$$\Psi_{\vec{k},\omega} := T_{\vec{k}\Delta,0} G_{\omega}$$

Euclidean invariant computation of completion fields

• Computation acts on coefficient vectors ${\bf s}$ of functions s:

$$s = \sum \mathbf{s}_{\vec{k},\omega} \Psi_{\vec{k},\omega}$$

• Represent action of $Q=B^{\frac{1}{2}}PB^{\frac{1}{2}}$ on coefficient vector ${\bf s}$ as

$$(\mathbf{Q}\,\mathbf{s})_{ec{\ell},\eta} \; = \; \sum_{ec{k},\omega} \, \mathbf{Q}_{ec{\ell},\eta;ec{k},\omega} \mathbf{s}_{ec{k},\omega}$$

- ullet Power method: $\mathbf{s} = \lim_{m \to \infty} \mathbf{s}^{(m)}$ where $\mathbf{s}^{(m+1)} = \mathbf{Q}\mathbf{s}^{(m)}/\|s^{(m)}\|$
- ullet Compute ${f c}$ from ${f s}$ and synthesize the completion field, c

Demonstration of Euclidean Invariance

Biological Motivation

Receptive fields in

- Lateral geniculate nucleus are not orientation sensitive (spot image)
- Primary visual cortex (V1) are orientation selective (source field)
- Secondary visual cortex complete contours (completion field)

Our computation suggests

Orientation selectivity in V1 is an emergent property of the higher-level computation of salient closed contours

Conclusions

First discrete neural network that computes salient closed contours in images such that

- Input is isotropic, consisting of spots not edges
- Network computes a well-defined function of input
- Based on a distribution of closed contours
- Computation is Euclidean invariant in the continuum

References

- L.R. Williams and J. Zweck, "A rotation and translation invariant discrete saliency network", *Biological Cybernetics*, **88**, (1), pp. 2-10, 2003.
- J. Zweck and L.R. Williams, "Euclidean group invariant computation of stochastic completion fields using shiftable-twistable functions", Journal of Mathematical Imaging and Vision, (to appear), 2003.